American Mineralogist, Volume 91, pages 475-478, 2006

LETTER Equation of state of CaIrO₃-type MgSiO₃ up to 144 GPa

SHIGEAKI ONO,^{1,*} TAKUMI KIKEGAWA,² AND YASUO OHISHI³

¹Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka-shi,

Kanagawa 237-0061, Japan

²High Energy Acceleration Research Organization, 1-1 Oho, Tsukuba 305-0801, Japan ³Japan Synchrotron Radiation Research Institute, Mikazuki-cho, Sayo-gun, Hyogo 679-5198, Japan

ABSTRACT

The structure and equation of state for CaIrO₃-type MgSiO₃ were determined using high-pressure powder X-ray diffraction from 116 to 144 GPa. The CaIrO₃-type phase remained stable over this entire pressure range. At each pressure increment, the sample was heated with a laser to relax the deviatoric stress in the sample. Pressure-volume data could be fitted to the Birch-Murnaghan equation of state with $K_0 = 237(1)$ GPa using Anderson's gold pressure standard, when K'_0 and V_0 were set to 4 and 162.86 Å³, respectively. This indicates that the bulk modulus of MgSiO₃ is 250–260 GPa. The *b* axis of the unit-cell parameter was more compressive than the *a* and *c* axes. The unit-cell volumes at high pressures, observed in high-pressure experiments, were slightly smaller than those predicted by theoretical studies.

Keywords: Post-perovskite, crystal structure, CaIrO₃-type structure, diamond anvil cell, Mg-SiO₃