Pressure-induced hydration in zeolite tetranatrolite

YONGJAE LEE,^{1,*} JOSEPH A. HRILJAC,² JOHN B. PARISE,³ AND THOMAS VOGT¹

¹Department of Earth System Sciences, Yonsei University, Seoul 120749, Korea and Physics Department, Brookhaven National Laboratory, Upton, New York 11973, U.S.A. ²School of Chemistry, University of Birmingham, Birmingham, B15 2TT, U.K. ³Geosciences Department, State University of New York, Stony Brook, New York 11794, U.S.A.

ABSTRACT

The tetranatrolite-paranatrolite transformation has remained a key problem in understanding the paragenesis of zeolites in the natrolite family. It is accepted that when paranatrolite, approximate formula Na_{16-x}Ca_xAl_{16+x}Si_{24-x}O₈₀·24H₂O, is removed from an aqueous environment and exposed to the atmosphere, it loses water and transforms to tetranatrolite, Na_{16-x}Ca_xAl_{16+x}Si_{24-x}O₈₀·*n*H₂O ($n \le 24$). Here we show that this transformation is not only reversible, but that tetranatrolite exhibits two sequential pressure-induced hydrations leading first to paranatrolite and then to a superhydrated tetranatrolite above 0.2 and 3.0 GPa, respectively. We have previously reported similar behavior for the corresponding system with an ordered Si/Al distribution, i.e., natrolite itself, however the ordered version of paranatrolite exists over a much smaller pressure range. The pressure-induced transformations of natrolite and tetranatrolite thus further supports the supposition that paranatrolite is a distinct mineral species, with a pressure-stability field dependent upon composition.

Keywords: Crystal structure, high pressure, phase transition, tetranatrolite, paranatrolite, synchrotron X-ray powder diffraction, pressure-induced hydration