Evolution of product phase assemblages during thermal decomposition of muscovite under strong disequilibrium conditions

KARINE DEVINEAU,^{1,*} BERTRAND DEVOUARD,² FRÉDÉRIC VILLIERAS,¹ FRANÇOIS FAURE,² JEAN-LUC DEVIDAL,² AND ALAIN KOHLER³

¹Laboratoire Environnement et Minéralurgie, Ecole Nationale Supérieure de Géologie, UMR INPL-CNRS 7569, 15 avenue du Charmois, BP 40, 54501 Vandoeuvre-les-Nancy cedex, France

²Laboratoire Magmas et Volcans, Université Blaise Pascal, UMR UBP-OPGC-CNRS 6524, 5 rue Kessler, 63038 Clermont-Ferrand cedex, France ³Service Commun de Microscopie Electronique à Balayage, Université Henri Poincaré, 54506 Vandoeuvre-les-Nancy, France

ABSTRACT

We investigated the thermal decomposition of muscovite in natural granite powders heated to 1175 °C for durations from 5 min to 68 h, at 1 bar, paying special attention to the early stages of decomposition. This study shows that muscovite is completely transformed after 5 min. Muscovite pseudomorphs consist of glass, mullite, and Al-rich oxides. For short durations (5 and 40 min), the Al-rich phase was identified by XRD, electron diffraction, and TEM microanalysis as γ -Al₂O₃ containing 4–8 wt% FeO (total Fe), probably a few weight percents of MgO, and possibly up to 10 wt% SiO₂. Faint superstructure spots and diffuse streaks observed in electron-diffraction patterns suggest vacancy or trace elements ordering in the γ -Al₂O₃ defect spinel structure. γ -Al₂O₃ displays an unexpected acicular morphology, elongated along three directions at 120° in the basal (001)_{musc} planes and parallel to lateral faces of the former muscovite. Mullite forms rods elongated in the basal (001)_{musc} planes along a direction at 90° from one set of γ -Al₂O₃ needles. The γ -Al₂O₃ structure appears to be a metastable phase that is replaced by corundum for longer durations.

Keywords: Crystal growth: mullite, Al-rich oxide, high-temperature studies, experimental petrology: granite, muscovite, electron diffraction, electron microscopy