Low-pressure and low-temperature K-bearing kosmochloric diopside from the Osayama serpentinite mélange, SW Japan

TATSUKI TSUJIMORI AND JUHN G. LIOU

Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305, U.S.A.

ABSTRACT

Kosmochloric diopside with high K content up to 0.56 wt% (0.026 K atom per formula unit) was discovered from the Osayama serpentinite mélange in the Chugoku Mountains, SW Japan. K-bearing clinopyroxene fills microcracks (5-150 µm in wide) together with uvarovite within albite vein of a tremolite rock. Compositions of analyzed clinopyroxene consist mainly of kosmochlor + augite (92-98 mol%; Ko₁₉₋₃₈Aug₅₆₋₇₆) components and minor amounts of jadeite (0-6 mol%), aegirine (0-5 mol%), Ca-Tschermak (0-3 mol%), and K-kosmochlor (0-2 mol%). Although the K content in clinopyroxene is also variable and heterogeneous even in a single vein, clinopyroxene with higher K content occurs in Ko-rich part. Higher magnification secondary electron images confirmed that exsolution and inclusion are essentially absent in the analyzed clinopyroxenes. The good negative correlation between Cr + Na + K and $Ca + Mg + Fe^{2+}$ indicates the Cr incorporation into the octahedral site. Furthermore, K correlates with Na and Cr, indicating a simultaneous enrichment of K for Na and Cr during pyroxene growth. Textual relations, and parageneses and compositions of minerals suggest that the K-Cpx precipitated together with uvarovite in brittle microcracks directly from a Ca- and Cr-rich hydrothermal fluid at approximately P < 0.3 GPa and T < 400 °C. Although it has been experimentally concluded that only ultrahigh-P (>4 GPa) environment permits to host relatively large K⁺ cation into the clinopyroxene structure, our finding indicates that the incorporation of K into the kosmochlor-diopside series solid solution with at least 0.2 Cr cation p.f.u. is possible even at low P conditions.