Coupled dichotomies of apatite and fluid composition during contact metamorphism of siliceous carbonate rocks

SARAH C. PENNISTON-DORLAND* AND JOHN M. FERRY

Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland 21218, U.S.A.

ABSTRACT

The X_{CO_2} recorded by mineral-fluid equilibria in contact metamorphosed siliceous carbonates commonly defines two groups of rocks in the same aureole. One group records relatively low X_{CO_2} that results from infiltration of chemically reactive H₂O-rich fluid. The other records relatively high X_{CO_2} , up to 0.99, that results from decarbonation reactions with little or no infiltration. A complementary dichotomy in apatite compositions exists in five contact aureoles in Italy, Scotland, and the U.S.A. Apatite in the low- X_{CO_2} group is close to an F-OH solid solution. Apatite in the high- X_{CO_2} group is a relatively Cl-rich Cl-F-OH solution. The halogen content of fluid coexisting with analyzed apatite was characterized in two aureoles to determine the origin and significance of the dichotomy in apatite composition. Calculated $a_{\rm HF}/a_{\rm H_2O}$, $a_{\rm HF}/a_{\rm HCI}$, $a_{\rm HF}$, and $m_{\rm F_T}$ (the total F molality of fluid) are systematically higher in fluid coexisting with the low- X_{CO_2} group. In contrast, a_{HC}/a_{H_2O} in the high- X_{CO_2} group may be higher than or overlap with $a_{\text{HCI}}/a_{\text{HOO}}$ in the low- X_{CO_2} group. Calculated a_{HCI} and m_{CI_T} in the high- X_{CO_2} group are lower than or overlap with $a_{\rm HCl}$ and $m_{\rm Cl_{r}}$ in the low- $X_{\rm CO_2}$ group. The Cl-rich apatites in the high- X_{CO_2} group are explained by crystallization at relatively low $a_{H_2O_2}$, a_{HF_2} , and m_{F_T} rather than at high $a_{\rm HCI}$ or $m_{\rm Cl_T}$. In comparison, the F-OH apatites in the low- $X_{\rm CO_7}$ group formed by infiltration of rock by and equilibration with relatively H₂O-rich, high $m_{\rm Fq}/m_{\rm Cl_T}$ fluid, reflecting the same metasomatic process responsible for F-rich humite-group minerals and skarns in many contact aureoles. Calculated halogen contents indicate that the non-CO₂ fraction of fluid in equilibrium with both groups had modest, seawater-like salinity, and that the reactive H_2O - and F-rich fluid that infiltrated the low- X_{CO_2} group had a plutonic source.