American Mineralogist, Volume 90, pages 1835–1839, 2005

The stability and Raman spectra of ikaite, CaCO₃·6H₂O, at high pressure and temperature

ANAT SHAHAR,^{1,2,*} WILLIAM A. BASSETT,^{1,†} HO-KWANG MAO,² I-MING CHOU,³ AND WENDY MAO²

¹Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York 14853, U.S.A ²Geophysical Laboratory, Carnegie Institution of Washington, Washington D.C. 20015, U.S.A. ³954 National Center, United States Geological Survey, Reston, Virginia 20192, U.S.A.

ABSTRACT

Raman analyses of single crystals of ikaite, CaCO₃·6H₂O, synthesized in a diamond-anvil cell at ambient temperature yield spectra from 0.14 to 4.08 GPa; the most intense peaks are at 228 and 1081 cm⁻¹ corresponding to E_g (external) and A_{1g} (internal) modes of vibrations in CO₃⁻² ions, respectively. These are in good agreement with Raman spectra previously published for ikaite in powder form at ambient temperature and pressure. Visual observations of a sample consisting initially of a mixture of calcite + water in a hydrothermal diamond-anvil cell yielded a *P*-*T* phase diagram up to 2 GPa and 120 °C; the boundary for the reaction ikaite \leftrightarrow aragonite + water has a positive slope and is curved convexly toward the aragonite + water field similar to typical melt curves. This curvature can be explained in terms of the Clapeyron equation for a boundary between a solid phase and a more compressible liquid phase or largely liquid phase assemblage.