Quantitative analysis of ammonium in biotite using infrared spectroscopy

VINCENT BUSIGNY,^{1,2,*} PIERRE CARTIGNY,¹ PASCAL PHILIPPOT,² AND MARC JAVOY¹

¹Laboratoire de Géochimie des Isotopes Stables, CNRS-UMR 7047, IPGP et Université Paris VII, 2 place Jussieu, 75252 Paris Cedex 05, France ²Laboratoire de Géosciences Marines, CNRS-UMR 7097, IPGP et Universités Paris VI et VII, 2 place Jussieu, 75252 Paris Cedex 05, France

ABSTRACT

The present paper provides a calibration of the Beer-Lambert law allowing the determination of the ammonium (NH₄) content of biotite using infrared (IR) spectroscopy. Single biotite crystals were analyzed by Fourier Transform Infrared spectroscopy. Using a linear correlation between the NH₄ infrared absorption band intensity and the NH₄ content as determined by vacuum techniques, the NH₄ molar absorption coefficient at 1430 cm⁻¹ was found to be 441 ± 31 L/mol·cm. After having calibrated the biotite thickness to Si-O absorption band, the NH₄ content of biotite can be calculated directly from its IR spectrum by the relation:

$$[\mathrm{NH}_{4}^{+}] \text{ (ppm)} = 1044.3 \times \frac{A^{1430} - A^{2395}}{A^{1249} - A^{2395}} - 320$$

where A^{1249} , A^{1430} , and A^{2395} are absorbances corresponding to wavenumbers 1249 cm⁻¹ (Si-O vibration peak), 1430 cm⁻¹ (NH₄ bending), and 2395 cm⁻¹ (spectrum baseline), respectively. The analysis of biotites having different chemical compositions suggests that, to a first approximation, the calibration is independent of biotite chemical composition. An infrared determination of NH₄ partitioning between muscovite and biotite coexisting in the same rocks shows good agreement with results of previous studies and further validates the method.