Compressibility of phase Egg AlSiO₃OH: Equation of state and role of water at high pressure

CARINE B. VANPETEGHEM,¹ EIJI OHTANI,^{1,*} TADASHI KONDO,¹ KENICHI TAKEMURA,² AND TAKUMI KIKEGAWA³

¹Institute of Mineralogy, Petrology and Economic Geology, Faculty of Science, Tohoku University, Sendai 980-8578, Japan ²National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan ³High Energy Accelerator Research Organization, Tsukuba, Ibaraki, Japan

ABSTRACT

We have determined the equation of state of phase Egg, AlSiO₃OH, at room temperature up to 40 GPa, using X-ray powder diffraction with synchrotron radiation. We determined the isothermal bulk modulus $K_{0T} = 157 \pm 4$ GPa with a pressure derivative $K'_{0T} = 6.5$ (4) by fitting a third order Birch-Murnaghan equation of state. When K'_{0T} is fixed at 4, we obtain $K_{0T} = 183 \pm 2$ GPa. This value can be compared to other hydrous phases existing in the transition zone as well as to non-hydrous phases, such as kyanite, Al₂SiO₅. We find that despite the presence of hydrogen, the bulk modulus of phase Egg remains high, unlike other low-pressure hydrous minerals. In addition, we found that phase Egg is more compressible along the **b** axis, where the O-H bonds are oriented. Our results are in good agreement with previous theoretical calculations, performed on the similar hydrous phase δ -AlOOH, that show that the O-H bond strengthens with pressure, suggesting that the presence of water stored in these phases does not soften the material at pressures corresponding to lower mantle conditions.