American Mineralogist, Volume 88, pages 293-300, 2003

Pressure-induced phase transition in malayaite, CaSnOSiO₄

STEPHANIE RATH,^{1,*} MARTIN KUNZ,² AND RONALD MILETICH³

¹Labor für Kristallographie, ETH Zürich, Sonneggstrasse 5, CH-8092 Zürich, Switzerland

²Museum of Natural History, Augustinergasse 2, CH-4001 Basel, and Department of Earth Sciences, University of Basel, Bernoullistrasse 30,

CH-4056 Basel, Switzerland

³Mineralogisches Institut, Universität Heidelberg, Im Neuenheimer Feld 236,D-69120 Heidelberg, Germany

ABSTRACT

A single crystal high-pressure diffraction study in a diamond-anvil cell shows that monoclinic malayaite (CaSnOSiO₄) transforms into a triclinic high-pressure polymorph at $P_c = 4.95(1)$ GPa. No discontinuity was observed for the individual crystallographic axes or the volume compressibility. Instead, the $A2/a - A\overline{1}$ phase transition reveals itself by significant deviations of the α and γ angles from 90°. The bulk elastic properties of the triclinic phase cannot be distinguished from those of the monoclinic structure within experimental uncertainty (A2/a: $V_0 = 389.68(3)$ Å³, $K_0 = 121(1)$ GPa, and K' = 4.2(5); $A\overline{1}$: $V_0 = 390.3(1)$ Å³, $K_0 = 118.3(7)$ GPa, K' = 4). Fitting the compressibility to all data gives values of $V_0 = 389.64(3)$ Å³, $K_0 = 121.6(7)$ GPa and K' = 4.6(2). Structure refinements at four different pressures reveal the structural details of the monoclinic A2/a and triclinic $A\overline{1}$ phases. Below the transition temperature the SiO₄ polyhedra show some non-rigid distortion, whereas the SnO₆ polyhedra remain almost unchanged. At the phase transition, the SiO₄ tetrahedra show further angular twisting while the SnO₆ chains shift parallel to [$\overline{1}01$], inducing a reduction in symmetry. Furthermore, at pressures above 5 GPa the Ca atoms are displaced almost parallel to [$\overline{1}11$).

At 7.394(4) GPa the cell parameters of the triclinic structure are a = 6.9958(4) Å, b = 8.8080(9) Å, c = 6.4968(4) Å, $\alpha = 89.078(7)^\circ$, $\beta = 112.745(5)^\circ$, $\gamma = 91.230(7)^\circ$, V = 369.10(5) Å³; space-group $A\overline{1}$.