Order-disorder approach to calcioaravaipaite, [PbCa₂Al(F,OH)₉]: The crystal structure of the triclinic MDO polytype

ANTHONY R. KAMPF,^{1,*} STEFANO MERLINO,² AND MARCO PASERO²

¹Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, California 90007, U.S.A. ²Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, I-56126 Pisa, Italy

ABSTRACT

The crystal structure of calcioaravaipaite, PbCa₂Al(F,OH)₉, was initially solved by direct methods in the monoclinic space group A2/m (R = 12.4%). Further study demonstrated the OD nature of the structure, and showed that the crystal was twinned. The structure was solved in the triclinic space group $C\overline{1}$, a = 7.722(3), b = 7.516(3), c = 12.206(4) Å, $\alpha = 98.86(1)$, $\beta = 96.91(1)$, $\gamma = 90.00(1)^{\circ}$, V = 694.8(3) Å³, Z = 4, yielding R = 5.1% for 1420 reflections with $F_o > 4\sigma(F_o)$.

Calcioaravaipaite belongs to a family of order-disorder (OD) structures formed by equivalent layers of symmetry *C2/m*. Two maximum-degree-of-order (MDO) polytypes are possible. MDO1 results from a regular alternation of stacking operators $2_{1/2}$ and $2_{-1/2}$ and yields a monoclinic structure with *C2/c*, *a* = 7.72, *b* = 7.52, *c* = 24.12 Å, β = 96.99°. MDO2 results from the sequence $2_{1/2}/2_{1/2}/2_{1/2}/2_{1/2}/\ldots$ and yields a triclinic structure with *a* = 7.72, *b* = 7.52, *c* = 12.21 Å, α = 98.86, β = 96.91, γ = 90.00°.

The structure of calcioaravaipaite is comprised of two kinds of alternating polyhedral slabs parallel to (001). Slab 1 consists of a fluorite-like double layer of edge-sharing (CaF₈) distorted cubes and slab 2 is a composite of face- and edge-sharing (PbF₁₂) polyhedra and outlying (AlF₆) octahedra, the latter sharing faces and edges with the (PbF₁₂) polyhedra, but no elements with one another. Aravaipaite and calcioaravaipaite share a common fluorite-type layer; however, in aravaipaite the presence of Pb²⁺ rather than Ca²⁺ in this layer results in slabs of strikingly different polyhedral configuration.