Another step toward understanding the true nature of sartorite: Determination and refinement of a ninefold superstructure

PETER BERLEPSCH,^{1,*} THOMAS ARMBRUSTER,¹ EMIL MAKOVICKY,² AND DAN TOPA³

¹Laboratorium für chemische und mineralogische Kristallographie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland ²Geological Institute, Department of Mineralogy, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark ³Departement für Geologie und Mineralogie, Universität Salzburg, Hellbrunner Str. 34/III, A-5020 Salzburg, Austria

ABSTRACT

Single-crystal X-ray diffraction data, collected from a sartorite crystal from Lengenbach (Binntal, Valais, Switzerland), yielded a ninefold superstructure: space group $P2_1/c$; a = 37.71(2), b = 7.898(3), c = 20.106(8) Å, $\beta = 101.993(7)^\circ$; $R_1 = 6.08\%$ for 6293 reflections with $I > 2\sigma_I$. The sample is an $N_{1,2} = 3,3$ sartorite homologue and the refined formula Pb₈Tl_{1.5}As_{17.5}S₃₅ compares very well with the empirical formula Pb_{8.2}Tl_{1.4}As_{17.5}Sb_{0.5}S₃₅ obtained from electron microprobe analyses. It has a high Tl content, up to 6.5 wt%. In a coupled substitution approximately 1.5 Tl⁺ replace about 0.5 As³⁺ and 1 PbS. The refined structure has 35 S atoms pfu instead of the expected 36 S (= 9×4 S, from PbAs₂S₄). The incorporation of substantial amounts of Tl⁺ into PbAs₂S₄ is essential for the type and periodicity of superstructures in sartorite. The refined superstructure can be interpreted as a so-called "lock-in" structure with a composition that yields a commensurate lattice for a mineral that usually has an incommensurate lattice. No commensurate periodicity could be found for a second crystal with about 0.5 Tl apfu.