Hard-mode infrared spectroscopy of perovskites across the CaTiO₃-SrTiO₃ solid solution

HINRICH-WILHELM MEYER,^{1,*} MICHAEL A. CARPENTER,¹ ANA I. BECERRO,² AND FRITZ SEIFERT²

¹ Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, U.K.
² Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany

ABSTRACT

Powder infrared spectra of perovskites across the CaTiO₃-SrTiO₃ solid solution have been collected at room temperature for the range 20–700 cm⁻¹. Frequency, intensity, and line broadening parameters vary with a pattern that appears to follow the development of the orthorhombic shear strain for the *Pnma* structure. The data are at least consistent with the *Pm3m* \leftrightarrow *14/mcm* transition at Sr-rich compositions being continuous in character and the tetragonal \leftrightarrow orthorhombic transition at ~62% SrTiO₃ content being discontinuous. In spite of the fact that crystals with intermediate composition have recently been shown to have *Pnma* rather than *Cmcm* symmetry, autocorrelation analysis of their IR spectra shows that they have features which distinguish them from crystals with *Pnma* symmetry for CaTiO₃ rich compositions. In particular, crystals of intermediate composition have the highest values of the line broadening parameter, Δ corr, for the solid solution, suggesting that they are characterized by relatively high degrees of local structural heterogeneity.