Determination of the limiting fictive temperature of silicate glasses from calorimetric and dilatometric methods: Application to low-temperature liquid volume measurements

JEAN A. TANGEMAN* AND REBECCA A. LANGE

Department of Geological Sciences, 2534 C.C. Little Building, University of Michigan, Ann Arbor, Michigan 48109-1063, U.S.A.

ABSTRACT

The limiting fictive temperatures ($T_{\rm f}$) of 16 multi-component silicate glasses have been derived quantitatively from heat capacity measurements, following the method of Moynihan et al. (1976). These quantitative values of $T_{\rm f}$ closely match temperatures corresponding to the onset ($T_{\rm onset}$) of the rapid rise in dilatometry heating curves (dL/L vs. T) at the glass transition, obtained on glasses with similar cooling histories. The mean deviation ($T_{\rm f} - T_{\rm onset}$) is 5 K, whereas the maximum deviation is 17 K. These results confirm that the $T_{\rm f}$ of a silicate glass can be determined from the $T_{\rm onset}$ of a glass dilatometry curve with an uncertainty that is <20 K. An application of the $T_{\rm f}$ measurements includes the precise determination of the specific volumes of supercooled liquids at their respective $T_{\rm f}$ values (Lange 1997). By comparison with other measurements in the literature, the accuracy of the $T_{\rm f}$ method for determining low-temperature, fully relaxed, supercooled liquid volumes is shown. A comparison of volume-temperature models in the literature shows that a linear model (where thermal expansivity is independent of temperature) provides a superior fit of measured volumes in the SiO₂-Al₂O₃-MgO-CaO-Na₂O-K₂O system over very wide temperature intervals (700–1900 K).