Cation distribution in synthetic zinc ferrite (Zn_{0.97}Fe_{2.02}O₄) from in situ high-temperature neutron powder diffraction

ALESSANDRO PAVESE,^{1,2,*} DAVIDE LEVY,³ AND ANDREAS HOSER⁴

¹Dipartimento Scienze della Terra-Università degli Studi di Milano, Via Botticelli 23, 20133 Milano, Italy ²National Research Council, Centro di Studio per la geodinamica alpina e quaternaria, Via Mangiagalli 34, 20133 Milano, Italy ³European Synchrotron Radiation Facility, ESRF-F 38043, Grenoble Cedex, France ⁴Berlin Neutron Scattering Center, BENSC, Hahn Meitner Institut-D 43100 Berlin, Germany

ABSTRACT

Neutron powder diffraction experiments at high temperature (300–1600 K) were performed at BENSC (Berlin, D), on synthetic Zn_{0.97}Fe_{2.02}O₄, to investigate the cation partitioning of Zn and Fe over the tetrahedral and octahedral sites as a function of *T*. The data analysis combined Rietveld structure refinements with minimization techniques. The thermodynamic behavior of the thermally activated order-disorder transformation occurring in Zn-ferrite was interpreted by the O'Neill-Navrotsky model ($\alpha = 49.3 \pm 0.4$ and $\beta = -31.6 \pm 2.0$ kJ/mol) and by the equilibrium Landau theory. We obtain $\lambda_2 = 2.813 \pm 0.002/K$, $T_c = 1022 \pm 37$ K using a "pure" Landau approach, and $h = -1.164 \pm 0.002$ kJ/mol, $c = 9.868 \pm 0.06$ kJ/mol, $T_c = -742 \pm 10$ K, if the configurational contribution to entropy is explicitly accounted. The results are in agreement with the earlier powder XRD work of O'Neill (1992) on quenched specimens, but extend the temperature over which measurements were obtained to 1600 K.