In situ powder diffraction study of titanite (CaTiOSiO₄) at high pressure and high temperature

MARTIN KUNZ,^{1,*} THILO ARLT,^{2,†} AND JANO STOLZ³

¹Labor für Kristallographie, ETH Zentrum, Sonneggstrasse 5, CH-8092 Zürich ²Bayerisches Geoinstitut, Universutät Bayreuth, D-95440 Bayreuth* ³Labor für mineralogische und chemische Kristallographie, Freiestrasse 3, CH-3012 Bern

ABSTRACT

A set of powder diffraction data was collected for synthetic titanite (CaTiOSiO₄) at simultaneously high pressures and high temperatures in a *P*-*T* field between 275 K to 650 K and room pressure to 4.9 GPa, respectively. With these data it was possible to relate the *A2/a* high-pressure phase at >3.5 GPa (room temperature) to the *A2/a* high temperature phase observed above 825 K (room pressure). The slope of the phase transition is –180 K/GPa. The data also allowed the extraction of *P*-*V*-*T* equations of state with the following parameters: for *P2*₁/*a*: $K_{298,0} = 113.4(3)$, ($\partial K_{T,0}/\partial T$)_{*P*} = -0.061(3) GPa/K, $V_{298,0} = 369.04(2)$ Å³, $\alpha_0 = 2.07(5)/10^5$ K. For *A2/a*: $K_{298,0} = 135.2(2)$, ($\partial K_{T,0}/\partial T$)_{*P*} = -0.073(1) GPa/K, $V_{298,0} = 367.12(2)$ Å³, $\alpha_0 = 2.8(2) / 10^5$ K, where *K* is bulk modulus, *V* is volume, and α is thermal expansivity. A structural analysis based on Rietveld refinements revealed that the polymerized CaO₇ polyhedra dominantly affect the structural response to changing pressure and temperature. The TiO₆ octahedra rotate almost rigidly in response to the compression of the CaO₇ polyhedra with which they share edges. The SiO₄ tetrahedra show a strong angular distortion with only little change in bond lengths.