American Mineralogist, Volume 85, pages 1503-1507, 2000

Infrared study of OH sites in tourmaline from the elbaite-schorl series

CRISTIANE CASTAÑEDA,¹ ESTER FIGUEIREDO OLIVEIRA,^{2,*} NEWTON GOMES,³ AND ANTÔNIO CARLOS PEDROSA SOARES⁴

¹Avenue Pinheiros 913 Caixa Postal 3173, Retiro das Pedras, CEP 30140-970 Belo Horizonte, Minas Gerais, Brazil ²National Commission of Nuclear Energy, Center of Development of the Nuclear Technology, Caixa Postal 941, CEP 30123-970 Belo Horizonte, Minas Gerais, Brazil

³Department of Geology, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, CEP 35400-000 Brazil ⁴Institute of Geosciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, CEP 30430-120, Brazil

ABSTRACT

Two different behaviors controlled by local lattice environment of crystallization are observed in the IR spectra of polycrystalline natural tourmalines from the elbaite-schorl series in the O-H stretching region (3800–3100 cm⁻¹). The first case is characterized by the presence of three O-H stretching bands, and is observed in elbaite [Na(Li,Al)₃Al₆(BO₃)₃Si₆O₁₈(OH)₄], schorl [NaFe³⁺₃Al₆(BO₃)₃Si₆O₁₈(OH)₄] and Fe-elbaite. The second case is observed in Li-rich schorl and is marked by four O-H stretching bands. This behavior is due to the presence of Li-rich and Fe-rich domains in schorl crystallized in Li-bearing-pegmatites. Band assignments are discussed using the results of the factor group analysis for a $C_{3\nu}$ ⁵ crystal structure and considering the interactions between the O-H and the atoms in the Y and Z sites in the crystal. The interpretation presented differs from previous conclusions.