American Mineralogist, Volume 85, pages 1799–1803, 2000

Crystal structure of CaMg₂Al₆O₁₂, a new Al-rich high pressure form

HIROYUKI MIURA,^{1,*} YOICHI HAMADA,² TOSHIHIRO SUZUKI,² MASAKI AKAOGI,² NOBUYOSHI MIYAJIMA,³ AND KIYOSHI FUJINO¹

¹Division of Earth and Planetary Sciences, Graduate School of Science, Hokkaido University, N10,W8, Kita-ku, Sapporo 060-0810, Japan ²Department of Chemistry,Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan ³Institute for Solid State Physics, University of Tokyo, Roppongi, Minato-ku, Tokyo 106-8666, Japan

ABSTRACT

The crystal structure of CaMg₂Al₆O₁₂, a new high-pressure phase synthesized at 21.8 GPa and 1200 °C using a multi-anvil apparatus, was solved by a newly developed structure program and refined by Rietveld analysis of the powder X-ray diffraction profile. The structure is hexagonal with cell constants a = 8.7616(2) and c = 2.7850(1) Å, and space group $P6_3/m$. The structure of this phase contains double chains of edge shared AlO₆ octahedra running along the *c* axis. Three double chains share corners to form sixfold positions in which octahedrally coordinated Mg atoms reside. The large Ca atoms are randomly distributed at ninefold sites with half-occupancy in the hexagonal tunnel. Previously reported Al-rich silicate phases could possibly have the same structure. This structure could thus qualify as one of the possible major host phases for aluminum in the lower mantle.