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INTRODUCTION

Aqueous fluids are involved in the mass-transport and meta-
somatic processes occurring in many geological terrains such
as subduction zones, spreading centers, arc magmatism, and
ore deposits. To have a better and quantitative understanding
of these processes, compositions of aqueous fluids coexisting
with minerals must be known, which can be done both experi-
mentally and theoretically. In terms of experiments, three dis-
tinct techniques can be applied. The first is the determination
of the weight loss of mineral grains after experiment (e.g.,
Anderson and Burnham 1965; Manning 1994); the second is
the extraction and analysis of fluids or precipitates (e.g.,
Schneider and Eggler 1986; Walther and Orville 1983; Hemley
et al. 1977; Manning and Boettcher 1994); and the third is the
determination of intersection of phase boundaries by identifi-
cation of mineral coexistence after experiment (e.g., Nakamura
and Kushiro 1974, Ryabchikov et al. 1982). In terms of theory
thermodynamic calculations are performed routinely for min-
eral-fluid equilibria (e.g., Johnson et al. 1992).

Among minerals considered, quartz has received the most

attention (e.g., Kennedy 1950; Weill and Fyfe 1964; Anderson
and Burnham 1965; Walther and Orville 1983; Manning 1994).
These studies have reported fluid compositions in silica-satu-
rated systems over a wide range of temperatures and pressures.
As for silica-deficient systems, Hemley et al. (1977) determined
silica concentrations in equilibrium with forsterite + enstatite
and other mineral assemblages at 0.1 GPa. Walther and
Helgeson (1977), using thermodynamic properties of aqueous
silica derived from quartz solubility studies, successfully pre-
dicted silica concentrations in equilibrium with mineral assem-
blages in the system Al2O-SiO2-H2O and MgO-SiO2-H2O at 0.1
GPa and temperatures from 25 to 600 °C. At higher pressures,
Nakamura and Kushiro (1974), Ryabchikov et al. (1982), and
Manning and Boettcher (1994) determined the silica concen-
tration in equilibrium with enstatite + forsterite from 1.0 to 3.0
GPa and temperatures from 700 to 1310 °C.

To fully understand the mass-transport and metasomatic
processes occurring in silica-deficient systems, systematic in-
vestigations of the compositions of aqueous fluids in equilib-
rium with the mineral pair enstatite + forsterite were undertaken
in the present study at pressures from 1.0 to 2.0 GPa and tem-
peratures from 900 to 1200 °C. Fluid compositions were deter-
mined by locating the intersection of phase boundaries. Data
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ABSTRACT

The compositions of aqueous fluids in equilibrium with enstatite + forsterite were investigated at
temperatures from 900 to 1200 °C and pressures from 1.0 to 2.0 GPa. Experiments, performed in a
piston-cylinder apparatus, involved the location of phase boundaries between the stability fields of
enstatite and enstatite + forsterite, and enstatite + forsterite and forsterite. The intersection of these
two phase-boundaries near the H2O apex was used to define the fluid composition. The results indi-
cated a systematic increase in the concentration of silica in the fluid phase with increasing tempera-
ture. The experiments indicated that the concentration of dissolved MgO was below 0.3 mol% and
not resolvable using our techniques. This finding was corroborated by microprobe analyses of quench
precipitates from the fluid phase, which gave on average 0.2 mol% MgO. Because of the low MgO
concentrations, the mean values of the intercepts with SiO2-H2O binary of the fitted lines represent-
ing, respectively, the phase boundaries between the enstatite and enstatite + forsterite and between
the enstatite + forsterite and forsterite stability fields were taken to represent the concentrations of
dissolved silica at the various temperatures and pressures of the present study. The concentrations
increased from 0.6 mol% at 900 °C to 3.9 mol% at 1200 °C at 1.0 GPa. The pressure effect from 1.0
to 2.0 GPa at 1000 °C appeared to be minor and not resolvable using our techniques. At 1.0 GPa, the
base 10 logarithm of the molal concentration of dissolved silica in equilibrium with enstatite +
forsterite was obtained combining data from the present study with those from Nakamura and Kushiro
(1978) and Manning and Boettcher (1994):

log mSiO2(aq)

En−Fo = 6.869 − 1.335 × 104 / T (K) + 5.544 × 106 / T(K)2 .

Comparison with studies of the solubility of quartz (Manning 1994) indicated that thermody-
namic properties of aqueous silica derived from silica-saturated systems may not be applicable to
calculations in silica-deficient systems at high pressure.
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