American Mineralogist, Volume 83, pages 404–408, 1998

LETTER

Crystal structure of a new spinelloid with the wadsleyite structure in the system Fe_2SiO_4 -Fe_3O_4 and implications for the Earth's mantle

A.B. WOODLAND¹ AND R.J. ANGEL²

¹Mineralogisches Institut, Universität Heidelberg, Im Neuenheimer Feld 236, D-69120 Heidelberg, Germany ²Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany

ABSTRACT

A new spinelloid polytype with a composition $Fe_{2.45}Si_{0.55}O_4$ has been synthesized at 1100 °C and 5.6 GPa that is isostructural with wadsleyite $[\beta - (Mg,Fe)_2SiO_4]$. The refined parameters (space group *Imma*) are: a = 5.8559(2) Å, b = 11.8936(4) Å, c = 8.3684(2) Å, V = 582.84(2) Å³. Tetrahedrally coordinated Fe³⁺ and Si are completely disordered and the substitution of Fe³⁺ for nearly one-half of the Si results in a significant expansion of the tetrahedra. This is the first direct evidence that significant amounts of Fe³⁺ can be incorporated into the wadsleyite-type structure. Because the β form of Fe₂SiO₄ is unstable, the implication is that Fe³⁺, by the substitution mechanism: $2Fe^{3+} = Si^{4+} + Fe^{2+}$, acts to stabilize the wadsleyites to lower pressures, which would influence the exact position of the "410 km" discontinuity. The apparent compatibility of Fe³⁺ in the wadsleyite structure, suggests that available Fe³⁺ will be readily incorporated in the modally dominant phase in the upper parts of the transition zone, thereby leading to a low f_{O_2} in this region of the mantle.