The systematics of Cr³⁺ and Cr²⁺ partitioning between olivine and liquid in the presence of spinel

BEN HANSON* AND JOHN H. JONES[†]

Planetary Science Branch, SN2, Lyndon B. Johnson Space Center, National Aeronautics and Space Administration, Houston, Texas 77058, U.S.A.

Abstract

The partitioning behavior of Cr into olivine in basaltic systems has been parameterized and can now be modeled over a wide range of redox conditions and liquid compositions. The Cr²⁺/Cr³⁺ in spinel-saturated experimental systems can be estimated based on a simple model of Cr solubility in basalt. Fe³⁺ appears to suppress the presence of Cr²⁺ in basaltic systems. We predict that, in Fe-free systems, all Cr is trivalent at log $f_{O_2} = -3$ (i.e., QFM+3 to QFM+4), whereas all Cr is trivalent at approximately Ni-NiO(QFM+1) in Febearing systems. Cr²⁺ predominates under redox conditions <IW-1 in both Fe-bearing and Fe-free systems.

 $D_{\text{Cr}^{2+}}$ and $D_{\text{Cr}^{3+}}$ (olivine/liquid) have been determined in various liquid compositions and temperatures. $D_{\text{Cr}^{3+}}$ (i.e., $f_{o_2} \ge QFM$, appropriate for most terrestrial or martian basalts) strongly covaries with the ratio of non-bridging oxygens to tetrahedrally coordinated cations (NBO/T) (Mysen 1983) and can be estimated using the equation

$$D_{\rm Cr^{3+}}^{\rm (ol/liq)} = -0.39 \cdot \frac{\rm NBO}{\rm T} + 1.29.$$

This relationship appears to be valid over the entire pressure range of olivine stability, from 1 atm to 15 GPa.

 $D_{c,2^+}$ (i.e., \leq IW-1, appropriate for lunar and some asteroidal basalts) is sensitive to liquid composition and temperature and can be estimated using either

$$D_{\rm Cr^{2+}}^{\rm (ol/liq)} = 0.24 \cdot D_{\rm Mr}^{\rm (ol/liq)} - 0.07$$

or

$$D_{\rm Cr^{2+}}^{\rm (ol/liq)} = 0.66 \cdot \left[\frac{10,000}{\rm T(K)} \right] - 4.48.$$

The 1/T equation is probably only valid at 1 atm pressure, but the D_{Mg} equation may be useful at higher pressures as well. The Cr content of spinel-saturated liquids is a function of temperature, composition, and f_{O_2} . However, the Cr content of spinel-saturated liquids is buffered by spinel and is insensitive to the bulk Cr content of the system (e.g., Roeder and Reynolds 1991). Therefore, the Cr content of a crystallizing, spinel-saturated basalt cannot be modeled using Raleigh fractionation models.