Thermoelastic parameters of Mg-sursassite and its relevance as a water carrier in subducting slabs

Sula Milani^{1,*}, Patrizia Fumagalli^{1,†}, Luca Ziberna², Juliette Maurice¹, Paolo Lotti¹, Davide Comboni^{1,3}, Francesco Pagliaro¹, Michael Hanfland³, Giorgio Bais⁴, Boby Joseph⁴, and Marco Merlini¹

¹Dipartimento di Scienze della Terra 'Ardito Desio', Università degli Studi di Milano, via Botticelli 23, 20133 Milan, Italy
²Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, via Weiss 8, 34128 Trieste, Italy
³ESRF-European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS40220, Grenoble Cedex, 38043, France
⁴Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14 km 163.5, Basovizza, Trieste 34149, Italy

ABSTRACT

We report the synthesis, at 7 GPa and 923 K, and the thermoelastic characterization, up to 16 GPa and 850 K, of a single crystal of Mg-sursassite, Mg₅Al₅Si₆O₂₁(OH)₇. In situ high-pressure and high-temperature single-crystal diffraction allowed the study of structural variation at non-ambient conditions and the determination of bulk elastic properties. The refined parameters of a second-order Birch-Murnaghan equation of state (BM-II EoS) are $V_0 = 446.02(1)$ Å³ and $K_{70} = 135.6(7)$ GPa. The thermal expansion coefficients of a Berman-type EoS are $\alpha_0 = 3.14$ (5) × 10⁻⁵ K⁻¹, $\alpha_1 = 2.50(16) \times 10^{-8}$ K⁻², and $V_0 = 445.94(3)$. For comparison, the *P-V* EoS is determined for a natural sursassite sample, ideally Mn₄Al₆Si₆O₂₂(OH)₆. The refined parameters of BM-II EoS [$V_0 = 470.2(3)$ Å³, $K_{70} = 128(4)$ GPa] indicate that composition has a minimal effect on elastic properties. The similarity of density and bulk properties of Mg-sursassite if compared to olivine and other anhydrous mantle minerals suggests that this phase could be overseen by geophysical methods.

Keywords: Mg-sursassite, hydrous minerals, crystal structure, thermoelastic parameters