High-pressure single-crystal synchrotron X-ray diffraction study of lillianite Azzurra Zucchini^{1,*}, Tonci Balić-Žunić², Ines E. Collings³, Michael Hanfland³, and Paola Comodi¹

¹Dipartimento di Fisica e Geologia, Università di Perugia, 06123 Perugia, Italy ²Department of Geosciences and Natural Resource Management, University of Copenhagen, 1350 Copenhagen, Denmark ³European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38000 Grenoble, France

ABSTRACT

In this paper, high-pressure data from a synchrotron X-ray diffraction study on a lillianite (Pb₃Bi₂S₆) single crystal up to ~21 GPa are presented. A phase transition from lillianite (space group *Bbmm*, LP lillianite) to the high-pressure form β -Pb₃Bi₂S₆ (space group *Pbnm*, HP lillianite) was confirmed and bracketed between 4.90 and 4.92 GPa. The transition is reversible but of first-order with a hysteresis of ~2.8 GPa. It showed weak effects of pseudo-merohedral twinning that disappeared upon decompression, testifying to a full recovery of the single crystal of lillianite. This makes lillianite an interesting shape-memory material.

With a bulk modulus $K_{4,9} = 78(3)$ GPa and K' = 5.1(4), β -Pb₃Bi₂S₆ is markedly less compressible than lillianite [$K_0 = 44(2)$ GPa, K' = 7(1)]. Compressional anisotropy increases markedly in β -Pb₃Bi₂S₆ with compressibility along the *b* axis [$M_{0b} = 130(6)$ GPa and $M'_b = 19(3)$ in lillianite, $M_{4,9b} = 145(4)$ GPa and $M'_b = 16.0(7)$ in β -Pb₃Bi₂S₆] significantly larger than that along the other two axes [$M_{0a} = 118(5)$ GPa, $M'_a = 21(3)$, $M_{0c} = 139(12)$ GPa, and $M'_c = 31(10)$ in lillianite, $M_{4,9a} = 242(12)$ GPa, $M'_a = 8(1)$, $M_{4,9c} = 242(5)$ GPa, and $M'_c = 29(1)$ in β -Pb₃Bi₂S₆].

The behavior of lillianite at high pressure is an interesting case study in relation to non-quenchable ultrahigh-pressure phases likely occurring in the inner Earth, like post-perovskite MgSiO₃, the oxide homologue N = 1 of the lillianite series. The β -Pb₃Bi₂S₆ structure, on the other hand, is the N = 3 homologue of the meneghinite series to which the higher-pressure modification of the post-perovskite structure also belongs (homologue N = 1). This makes the two forms of Pb₃Bi₂S₆ potential equivalents of high- and ultrahigh-pressure Mg silicates that could occur both in the deep earth and in other rocky extrasolar planetary bodies.

Keywords: Lillianite, high-pressure, synchrotron, single-crystal X-ray diffraction, phase transition, shape-memory