The new mineral crowningshieldite: A high-temperature NiS polymorph found in a type IIa diamond from the Letseng mine, Lesotho

Evan M. Smith^{1,*}, Fabrizio Nestola^{2,†}, Leonardo Pasqualetto², Federico Zorzi², Luciano Secco², and Wuyi Wang¹

¹Gemological Institute of America, New York, New York 10036, U.S.A. ²Department of Geosciences, Università degli Studi di Padova, Via Gradenigo 6, I-35131, Padova, Italy

ABSTRACT

Crowningshieldite is the natural analog of the synthetic compound α -NiS. It has a NiAs-type structure and is the high-temperature polymorph relative to millerite (β -NiS), with an inversion temperature of 379 °C. Crowningshieldite is hexagonal, space group $P6_3/mmc$, with a = 3.44(1) Å, c = 5.36(1) Å, V = 55.0(2) Å³, and Z = 2. It has an empirical formula (Ni_{0.90}Fe_{0.10})S and $d_{calc} = 5.47(1)$ g/cm³. The five strongest lines in the powder X-ray diffraction data are [d_{meas} in angstroms (I) (hkl)]: 1.992 (100) (102), 1.718 (55) (110), 2.978 (53) (100), 2.608 (35) (101), and 1.304 (17) (202). Crowningshieldite was found as part of a multiphase inclusion in a gem-quality, colorless, type IIa (containing less than ~5 ppm N) diamond from the Letseng mine, Lesotho. The inclusion contains crowningshieldite along with magnetite-magnesioferrite, hematite, and graphite. A fracture was observed that extended from the inclusion to the diamond exterior, meaning that fluids, possibly kimberlite-related, could have penetrated into this fracture and altered the inclusion. Originally, the inclusion might have been a more reduced, metallic Fe-Ni-C-S mixture made up of cohenite, Fe-Ni alloy, and pyrrhotite, akin to the other fracture-free, pristine inclusions within the same diamond. Such metallic Fe-Ni-C-S primary inclusions are a notable recurring feature of similar type IIa diamonds from Letseng and elsewhere that have been shown to originate from the sublithospheric mantle.

The discovery of crowningshieldite confirms that the α -NiS polymorph occurs in nature. In this case, the reason for its preservation is unclear, but the relatively iron-rich composition [Fe/(Fe+Ni) = 0.1] or the confining pressure of the diamond host are potential factors impeding its transformation to millerite. The new mineral name honors G. Robert Crowningshield (1919–2006) (IMA2018-072).

Keywords: Crowningshieldite, a-NiS, inclusion, type IIa diamond, Letseng