American Mineralogist, Volume 103, pages 1165-1168, 2018

LETTER

Heat capacity measurements of CaAlSiO₄F from 5 to 850 K and its standard entropy

PETER TROPPER^{1,*}, ULRIKE TROITZSCH², EDGAR DACHS³, AND ARTUR BENISEK³

¹Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52f, A-6020 Innsbruck, Austria

²Australian National University, College of Physical and Mathematical Sciences, Research School of Earth Sciences, Building 142 Mills Road,

Acton ACT, 2601 Australia

³Department of Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Strasse 2a, A-5020 Salzburg

ABSTRACT

Heat capacity (C_P) data of Al-F-bearing titanite are presented that yield the standard entropy $S_{298,15}^{\circ}$ of F-Al-titanite CaAlFSiO₄ (FAT). C_P of synthetic FAT was measured with relaxation calorimetry and differential scanning calorimetry between 5 and 764 K. The results constrain $S_{298,15}^{\circ}$ to be 115.4 ± 2.0 J/(mol·K) and subsequently the standard Gibbs free energy of formation from the elements, $\Delta_r G^{\circ}$, of CaAlSiO₄F to be between -2583 ± 3.0 and -2588 ± 3.0 kJ/mol, and the standard enthalpy of formation from the elements, $\Delta_r H^{\circ}$, to lie between -2728 ± 3.0 and -2733 ± 3.0 kJ/mol depending on the thermodynamic data retrieval approach. These data, in turn, can be used to quantitatively model high-grade and UHP fluid-rock interaction. The calculation of future petrogenetic grids involving F-bearing minerals and titanite solid solutions in the system CaTiSiO₄O–CaAlSiO₄F will only be possible by expanding existing internally consistent thermodynamic databases to the F-system.

Keywords: F-Al titanite, PPMS, DSC, standard entropy