Feldspar Raman shift and application as a magmatic thermobarometer

KENNETH S. BEFUS^{1,*,†}, JUNG-FU LIN², MIGUEL CISNEROS², AND SUYU FU²

¹Department of Geosciences, Baylor University, Waco, Texas 76798, U.S.A.

²Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas 78712, U.S.A.

ABSTRACT

We calibrate the pressure-dependent Raman shift of feldspars by measuring spectra of 9 compositionally diverse plagioclase and alkali feldspars at pressures ranging between 0.1 MPa and 3.6 GPa using a diamond-anvil cell coupled with Raman spectroscopy. We observe up to 12 vibrational modes that are caused by deformation of Si(Al)O₄ tetrahedral chains. The most intense modes are v_{22} , v_{24} , and v_{25} , which are produced by stretching and bending of four-membered Si(Al)-O-Si(Al) rings. Because modes are a product of lattice environments, feldspar composition may relate to mode frequency. We find that the frequencies of the v_{25} mode correlates with composition, whereas the other intense bands do not correlate with composition. All feldspar compositions exhibit modes that shift linearly $(r^2 > r^2)$ 0.9) to higher frequencies with increasing pressure. Modes v_{22} , v_{24} , and v_{25} shift to higher frequencies with slopes that range from 1.7 ± 0.5 to 5.5 ± 1.6 cm⁻¹ GPa⁻¹, and provide the best combination of intensity and pressure-sensitivity. For all compositions the v_{22} mode exhibits the most advantageous pressure-dependent (P-T) frequency shift. We use an elastic model, thermodynamic properties, and shear moduli to establish the pressure-temperature dependent sensitivity of feldspar inclusions hosted by garnet, clinopyroxene, and olivine. Raman shifts for all feldspars are <2 cm⁻¹ for crustal and upper lithosphere conditions. Albitic plagioclase inclusions show the least temperature-sensitive inclusion pressures and provide the best barometers, followed by alkali feldspars and anorthitic plagioclase. Our new calibration allows Raman spectroscopy of feldspars to be used to quantify P-T conditions for crustal magmatic rocks, low- to high-grade metamorphic rocks, and the mantle.

Keywords: Raman, barometry, inclusions, magma storage; Rates and Depths of Magma Ascent on Earth