Sound velocity measurements of hcp Fe-Si alloy at high pressure and high temperature by inelastic X-ray scattering

TAKANORI SAKAIRI¹, TATSUYA SAKAMAKI¹, EIJI OHTANI^{1,2,*}, HIROSHI FUKUI^{3,4}, SEIJI KAMADA⁵, SATOSHI TSUTSUI⁶, HIROSHI UCHIYAMA⁶, AND ALFRED Q.R. BARON⁴

¹Department of Earth and Planetary Materials Science, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan ²V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, Koptyuga Ave. 3, Novosibirsk 630090, Russia ³Center for Novel Material Science under Multi-Extreme Conditions, Graduate School of Material Science, University of Hyogo, Kamigori,

Hyogo 678-1297, Japan

⁴Materials Dynamics Laboratory, RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
⁵Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
⁶Japan Synchrotron Radiation Research Institute (JASRI), Hyogo 679-5198, Japan

ABSTRACT

The sound velocity of hcp $Fe_{0.89}Si_{0.11}$ (Fe-6wt% Si) alloy was measured at pressures from 45 to 84 GPa and temperatures of 300 and 1800 K using inelastic X-ray scattering (IXS) from laser-heated samples in diamond-anvil cells (DACs). The compressional velocity (ν_P) and density (ρ) of the Fe-Si alloy are observed to follow a linear relationship at a given temperature. For hcp $Fe_{0.89}Si_{0.11}$ alloy we found $\nu_P = 1.030 (\pm 0.008) \times \rho - 1.45 (\pm 0.08) + [3.8 \times 10^{-5}(T - 300) \times (\rho - 15.37)]$, including non-negligible temperature dependence. The present results of sound velocity and density of hcp $Fe_{0.89}Si_{0.11}$ alloy indicates that 3~6 wt% of silicon in the inner core with additional amount of Ni can explain the compressional velocity (ν_P) and density (ρ) of the "preliminary Earth reference model" (PREM), assuming a temperature of 5500 K and that silicon is the only light element in the inner core

Keywords: Sound velocity, Fe-Si alloy, high pressure, high temperature, inelastic X-ray scattering, inner core, Birch's law, silicon