Magnetite exsolution in ilmenite from the Fe-Ti oxide gabbro in the Xinjie intrusion (SW China) and sources of unusually strong remnant magnetization

WEI TAN^{1,2}, HONGPING HE^{1,2}, CHRISTINA YAN WANG^{1,2,*}, HUAN DONG¹, XIAOLIANG LIANG^{1,2}, AND JIANXI ZHU^{1,2}

¹Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China ²Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640, China

ABSTRACT

This study investigates magnetite exsolution in ilmenite from Fe-Ti oxide gabbro in the Xinjie intrusion, SW China. Exsolved magnetite lamellae in ilmenite contain nearly pure Fe₃O₄ with ~1 wt% TiO₂. EBSD-based analyses indicate that the magnetite lamellae have close-packed oxygen planes and directions parallel to those in the host ilmenite with $\{111\}_{Mag}/(0001)_{IIm}$ and $<110>_{Mag}/<10\overline{10}>_{IIm}$. The Fe²⁺ in the magnetite lamellae is probably derived from adjacent titanomagnetite by sub-solidus inter-oxide cation repartitioning of Fe²⁺ + Ti⁴⁺ = 2Fe³⁺ during cooling. It is thus suggested that only Fe³⁺ cations in the magnetite lamellae should be included into the composition of the IIm-Hem_{ss} precursor for the Fe-Ti oxide oxy-thermometer. The existence of magnetite exsolution in ilmenite also provides an alternative explanation for unusually strong natural remnant magnetization in natural ilmenite.

Keywords: Magnetite exsolution, ilmenite, electron backscatter diffraction (EBSD), crystallographic relationship, sub-solidus cation repartitioning