Natural Mg-Fe clinochlores: Enthalpies of formation and dehydroxylation derived from calorimetric study

Lyubov P. Ogorodova^{1,*}, Marina F. Vigasina¹, Lyubov V. Melchakova¹, Irina A. Kiseleva¹, Victoria V. Krupskaya^{1,2}, and Igor A. Bryzgalov¹

¹Geological Faculty, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119234, Russia ²Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS, Staromonetnii lane, 35, Moscow 109017, Russia

ABSTRACT

This paper presents the results of the first experimental thermochemical investigation of two natural trioctahedral chlorites (clinochlores). The study was performed with the help of a high-temperature heat-flux Tian-Calvet microcalorimeter. The samples were characterized by X-ray spectroscopy analysis, X-ray powder diffraction, thermal analysis, and FTIR spectroscopy. The enthalpies of formation of clinochlores were found using the melt solution calorimetry method to be: $-8806 \pm 16 \text{ kJ/mol}$ for composition (Mg_{4.9}Fe_{0.5}²Al_{0.8})[Si_{3.2}Al_{0.8}O₁₀](OH)₈ and $-8748 \pm 24 \text{ kJ/mol}$ for composition (Mg_{4.9}Fe_{0.5}²Al_{1.2}) [Si_{2.8}Al_{1.2}O₁₀](OH)₈. The experimental data for natural samples allowed calculating the enthalpies of formation for end-members and intermediate members of the clinochlore (Mg₅Al)[Si₃AlO₁₀](OH)₈ and chamosite (Fe₅Al)[Si₃AlO₁₀](OH)₈ series. An important feature of the clinochlore structure is the presence of two distinct hydroxyl-containing octahedral layers: the interlayer octahedral sheet and octahedral 2:1 layer; the enthalpies of water removal from these positions in clinochlore structure were determined as: $53 \pm 20 \text{ kJ/(mol·H}_2O)$ and $131 \pm 10 \text{ kJ/(mol·H}_2O)$, respectively. These obtained first thermodynamic characteristics of Mg-Fe clinochlores can be used for quantitative thermodynamic modeling of geological and industrial processes including clinochlores of different composition.

Keywords: Clinochlore, chlorite, thermochemistry, microcalorimetry, enthalpy of dehydroxylation, enthalpy of formation