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S1. Diffusion anisotropy corrections 

The generalized geometric correction for the diffusivity DV along a traverse which is not parallel to the 
concentration gradient is written (Zhang 2010) (Fig. A1a): 
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And, by definition, if the diffusion directions are orthogonal to each other, 2 2 2cos cos cos 1α β γ+ + = , 
thus yielding the simplified version reported in the main text (Fig. A1b): 
 

* 2 2 2cos cos cosV a b cD D D Dα β γ= + +        (A2) 

Figure A1.	
  Relationship between analytical traverse (thick dotted red line) and the concentration gradient (orange-yellow colors). 
(a) The traverse is perfectly parallel to the direction of the concentration gradient, but oblique to the crystallographic axes (angles 
α, β, γ between the traverse and the a, b and c axes respectively). In this case the correction only involves knowledge of the three 
angles to correct for diffusion anisotropy (Eq. A2). (b) The traverse can appear parallel to the concentration gradient within the 
2D plane corresponding to the analyzed section (thin dotted black region) but actually oblique in the third dimension (left 
diagram). Finally, the traverse and concentration gradient can be oblique in all directions (right diagram). In these two cases, a 
more general correction formula can be applied (Eq. A1) but requires knowledge of concentration variations in the three 
dimensions, which is never available in thin section. 
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S2. Numerical implementation of the diffusion models 

Finite differences were used to perform diffusion simulations, using distance steps Δx, Δy and Δz, and a 
numerical grid consists of i×j×k elements (points, pixels or voxels in 1, 2 and 3D). Using a central 
approximation, the first derivative of Eq. 2 with respect to x is (e.g. Ismail-Zadeh and Tackley 2010): 
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The implementation of finite difference derivatives to the time-dependent diffusion formulation (Eq. 2) 
has the drawback that the numerical scheme requires a stability criterion to be maintained, expressed as 
(e.g. Press et al. 2007): 
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with R taking the values 0.5 and 0.166 in 1D and 3D calculations respectively. This limits the size of the 
time and space steps that can be used in the models. To employ a realistic crystal size while maintaining 
reasonable computation times, a grid of 241×241×241 was used, with a spacing of 2 µm per 
point/pixel/voxel. This step size yielded olivines ~400 µm in size along the c axis. Typically, 1D diffusion 
models took a few seconds to a few minutes, while 3D models required up to 4 days to reach completion. 
A few models were performed using both smaller and larger spatial grids (51, 101, 301 and 401 voxels 
each side) with the same model parameters (i.e. spatial step sizes were adapted depending on the total grid 
size so that the crystal was exactly the same in dimension) for comparison. Only for the 51 voxel did 
concentrations profiles start to display step-like artefacts due to the low resolution, thus confirming that 
the use of 241 voxels for most models was appropriate to avoid resolution problems.   

S3. Quantifying goodness of fit 

The mismatch between 1D and 3D timescales were calculated using differences in concentration 
gradients at each time t, via a simple root-mean square deviation (RMSD) expression: 
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where M is the number of points along x, i is the coordinate along x in the profile, Creal is the ‘real’ 
concentration taken from the 3D model, and Cmeas is the concentration measured in the 1D model which is 
being evaluated.  

S4. Concentration profiles corresponding to center-cut, on axis 1D models 

In the main text, Figure 4 shows the best-matching timescales for 1D diffusion models based on ideal 
profiles along a, b and c. A different perspective can be gained by examining instead the evolution of 
concentration profiles with time, (i.e., without seeking the best-matching 1D model).  

American Mineralogist: October 2015 Deposit   AM-15-105163

2



 

Figure A2. (a) Comparison of center-cut concentration 
profiles across spherical crystals for the 1D and 3D models 
after a time t1D=t3D=144 h (i.e. with no attempt at finding a 
best-fit 1D or 2D model) (top plot) and associated 3D‒1D 
concentration mismatches (lower plot). (d) to (g) Similar 
plots with the orthorhombic and polyhedral morphologies, 
using either isotropic (d and e) or anisotropic (f and g) 
diffusion coefficients, and sampled along the three main 
crystallographic axes. 
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After 144 h of diffusion, the concentration profiles along the center of the spherical crystal differ, with 1D 
models failing to track the 3D profile (i.e. 1D less re-equilibrated than 3D) (Fig. A2a). The concentration 
differences are in both instances located towards the crystal edges. In contrast, for orthorhombic olivines 
run for 72 h   (isotropic D) and 144 h (anisotropic D), there are no differences between 1D and 3D along 
any of the three crystal axes (Fig. A2b and c). Discrepancies appear in the orthorhombic model with 
isotropic D and t=144 h (Fig. A2d), where concentration differences occur near the center of the crystals 
along both b and c. Finally, polyhedral olivine runs at t=144 h accounting for D anisotropy result in large 
(>1.5 % Fo) compositional dissimilarities between 1D and 3D models along a, and more moderate 
differences (~0.2 % Fo) along b and c (Fig. A2e). These compositional differences after identical run 
times are associated with fluxes from the 3rd dimension originating from converging faces (i.e at 
acute/obtuse angles) of the crystal (also see Figure A7 below). 

S5. The problem of merging diffusion fronts 

Diffusion fronts typically progress in directions perpendicular to crystal faces. As a result, at locations 
where crystal faces meet and form angles less than 180°, diffusion fronts will tend to merge (Fig. A3). 

Figure A3. Illustrative sketches of the regions affected by diffusion front interaction for sections within (a) spherical, (b) 
orthorhombic, and (c) polyhedral olivine crystals. Diffusion fronts (orange) propagate perpendicular to the faces, and merge 
where faces meet (shades of red). Because diffusion is not a cumulative process, the merging fronts progress towards the crystal 
center (i.e. reds areas are in practice redistributed as the mauve areas). The sphere has no flat faces, and we only show two 
merging fronts for simplicity, assuming they originate from slightly different angles. Also note that these sections represent a 2D 
view of interacting fronts, which may be more complex in 3D, particularly for polyhedral crystals 

 

S6. How can 1D times be over and underestimated in profiles collected away from the core? 

The main text describes the occurrence of both positive and negative time differences between 1D and 3D 
models for profiles that are taken along the same section orientation but at different distances from the 
core. Figure A4 illustrates how this apparent discrepancy is possible. 
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Figure A4. Effects of profile distance from the crystal core (measured in % core-rim distance) on 1D times for a spherical 
olivine. (a) Profiles sampled at increasing distances from the 3D model core, which are then used to compare with 1D models. 
(b), (c) and (d) display best fit 1D models at increasing distances from the core performed the known initial Fo concentration 
(i.e., known from the 3D olivine prior to diffusion), while the bottom plots assume that the initial Fo is the minimum apparent 
value. The shaded regions in each plot represent the total Fo flux required to reach the final profile, as well as associated best-fit 
times. 

 

S7. How can 1D times be underestimated in center-cut olivine sections preserving core 
concentrations? A worked example. 

In the main text and section S6, we highlighted that time underestimates are fairly common in situations 
where the initial Fo concentration has been lost, and more so when profiles are collected far away from 
the core. Nevertheless, Figure 7b and c in the main text also shows that time underestimates occur in 
profiles that are taken in on-center sections that preserve initial concentrations. This section explains how 
the simplified anisotropy correction that is used can also yield time underestimates. 

Figure A1 above showed that concentration gradients develop perpendicular to crystal faces, and the 
traverse direction may be oblique to the gradient in the 3rd dimension (despite appearing parallel in 2 
dimensions). Therefore, in the numerical comparison between 1D profiles and 3D models, even though 
the profiles were always selected parallel to the concentration gradient on a 2D slice, the concentration 
gradient was probably always apparent rather than real compared to the 3rd dimension.  

For example, in one of the rectangular olivine simulations, the true angles between the crystallographic 
axes a, b, c and the transect were α =80.38°, β =32.39°, and γ =59.40°. We assume for this exercise that 
Da=1, Db=1 and Dc=6. If the traverse is inferred to be parallel to the concentration gradient (Eq. A2) we 
calculate a diffusivity value * 2.3VD = . If, however, the concentration gradient is at an angle with at least 

one of the traverse directions (here for instance the y direction), then C
y

∂
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anisotropy correction (Eq. A2) tends to overestimate the effective diffusivity, and results in time 
underestimates.  

S8. Rapid loss of initial concentrations in core-rim zoned olivines. 

Diffusion models that use core-rim II and III zoning styles (i.e. with rims at disequilibrium with the melt) 
show that by 144 h, both initial core and rim concentrations have been lost. In fact, if we track the 
evolution of the concentration gradient through time, the initial rim concentration is lost shortly after 
about 15 h of diffusion. Figure A5 illustrates the profiles measured along c in these models at both 12 and 
144 h, as well as the distribution of timescales extracted from 1D models that are sampled along either 
randomly oriented sections, or randomly oriented sections at random distances from the crystal core. The 
distributions recovered are faithful to the true time after 12h Fig. A5b) but poorly reproduce the true time 
after 144 h (Fig. 9 in the main text).  

 

Figure A5. (a) Comparison 
of concentration profiles 
after 12 and 144 h of 
diffusion in the core-rim II 
zoning model. The initial 
profile (gray line) in this 
plot is the one derived from 
the 3D model before 
diffusion (’Fo known’). (b) 
Best-fit 1D diffusion time 
distribution histograms for 
the 12 h model (cf. Fig. 9 in 
the main article for the 144 
h equivalent) for on-center 
(left plot) and off-center 
cuts (right plot). In both 
cases, the initial Fo 
concentration is taken as the 
apparent maximum for the 
core and minimum for the 
rim (’Fo unknown’), which 
is the same as ‘Fo known’ 
since the initial rim or core 
concentration is still present 
after 12 h. The gray array 
marks the true 3D diffusion 
time. 

 

 

S9. Results from additional subset of 2D diffusion models performed using principal sections 

Methods. Although the scope of this paper is to compare 1D diffusion models with 3D, an additional set 
of 2D simulations were also carried out on principal sections (a–b, a–c, or b–c) and are presented here as 
a supplementary. The models used the 2D version of Fick’s law: 
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The diffusivities along the two main directions Dx and Dy are then replaced by Da, Db, or Dc to 
accommodate the slow and fast directions along either x or y. 

Just like their 1D and 3D equivalents, finite differences were used for 2D models, with the R parameter of 
the stability criterion being equal to 0.25 (see section S2 for definition). The 2D models were compared 
with 3D by (1) extracting a given section from the 3D olivine prior to applying any diffusion (Fig. A6), 
(2) performing a 2D diffusion model from the extracted section, (3) carrying out the 3D diffusion model, 
(4) comparing the 2D model and a section taken at the exact same location in the 3D diffused model via 
RMSD methods, expressed as: 
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Figure A6. Procedure to compare 2D and 3D diffusion models. Here, the illustration shows a principal section through the b-c 
axes, in a model where the core and rim have different compositions (Focore<Forim). At each diffusion timestep (1 to i), the 
concentration from the 2D diffusion model is compared with the groundtruth 3D concentration and the best-matching timescale is 
found where the difference is minimized. 

American Mineralogist: October 2015 Deposit   AM-15-105163

7



M and N are the number of points or pixels in the x and y directions, i and j are the coordinates, Creal is the 
‘real’ concentration taken from the 3D model, and Cmeas is the concentration measured in the 2D model. 
The best-matching timescale *

2Dt  was calculated from the 2D model time yielding the minimum RMSD. 

Results. First, 2D models were performed along principal sections from a reversely zoned olivine (zoning 
style ‘Reverse’, Fig. 2d) with a Fo70 composition equilibrating with a Fo80 melt, stopped at two different 
diffusion times (Fig. A7).  

Figure A7. Two-dimensional Fo sections derived from diffusion models involving a Fo70 olivine re-equilibrating with a melt in 
equilibrium with Fo80 after 48 h (top) and 576 h (bottom). (a) Concentration maps through the ground-truth 3D model (left) 
compared with the 2D model (right) after the same duration. (b) Concentration mismatch maps of the same sections, where warm 
colors mark regions of significant difference. (c) Explanation for why the 1D (cf. Fig. 4, main article) or 2D models may show 
important departures from their 3D equivalent. Regions colored in blue are areas where diffusion front interactions are accounted 
for in 2D (not 1D) and show no significant difference with the true concentration. Regions colored in brick-red display diffusion 
front interactions that cannot be modeled via 1D or 2D. 
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At shorter durations 3Dt  = 48 h, the 2D models performed using a-b and b-c sections are identical to their 
3D equivalents, while those that used a-c show large concentration mismatches near the edge of the 
crystal, parallel to [001] (Fig. A7a). If instead of examining the concentration difference between 3D and 
2D simulations after 48 h, the best matching time at which concentration differences are minimized are 
calculated, we obtain *

2Dt = 48 h, 48 h, and 69 h across a-b and b-c and a-c respectively. For longer 

durations ( 3Dt = 576 h), 2D-3D concentration mismatches worsen significantly, this time appearing in the 
three section categories (Fig. A7b). Concentration differences up to ~1% Fo are observed close to the 

( )010  and ( )010  faces across a-b and b-c sections, while within a-c sections, mismatches are focused 

parallel to c but also measurable in most of the crystal. As before, if instead of tracking the concentration 
difference with time, the 2D models are run to find the best matching times, we obtain *

2Dt = 712 h, 642 h, 
and 904 h across a-b and b-c and a-c respectively, systematically higher than the true time. 

In a second stage, 2D runs were performed along the same principal sections using the six zoning styles 
examined (cf. Fig. 2d) and compared against 3D models performed for ‘true’ durations 3Dt = 3, 6, 12, 24, 
48, 72, 144, 288 and 576 h. An additional set of 1D models with the same zoning characteristics were also 
performed for comparison. Best-matching times were calculated, and the time mismatch is here expressed 

as a ratio 
*
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tr
t

=  between the best fit 1D or 2D diffusion times ( *
1Dt  and *

2Dt ) and the known 

3D model duration 3Dt . Value of rt larger than one therefore imply that 1D or 2D overestimate 3D times 
and vice-versa.  

The 1D models along c or b typically match the true 3D diffusion times well (i.e. rt~1), but only up to 
durations ~72-144 h (Fig. A8). For longer durations, calculated 1D models either overestimate 3D 
simulation times (normal I and II, and reverse zonings, Fig. A8a, b, c) with ratios reaching rt~2.5, or 
underestimate the 3D times (core-rim II and III zonings, Fig. A8e, f), with rt~0.5. The 1D models along a 
systematically largely overestimate the true times for simple zonings (rt>2, Fig. A8a, b, c) and first 
overestimate then underestimate true times for more complex zonings (Fig. A8e and f). The core-rim I 
zoning is an exception, with true times well matched by 1D models regardless of crystallographic axis up 
to around 144 h, after which both time under- and over-estimates occur (Fig. A8d). The 2D models 
display very similar behavior, matching the true diffusion times perfectly along a-b or b-c planes up to 
timescales of 288 h for the simple zoning types (normal I and II, reverse) and the core-rim I zoning (Fig. 
A8a, b, c and d). For longer durations, the simulations tend to overestimate timescales, as in the 1D 
models. For the two other core-rim zoning patterns (II and III), the 2D runs yield accurate times up to 72 
h, and underestimate the 3D times for longer durations. Except for the core-rim I zoning configuration, a-
c sections produce inaccurate times, ratios rt typically ranging from 0.5 to 1.8. Both 1D models along a 
and 2D models across a-c show maximum mismatch for shorter timescales. 
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Figure A8. Plots of mismatch between best-fit 1D or 2D and the real 3D times against duration of the diffusion simulation for the 
six different zoning patterns examined. (a) Normal I, (b) Normal II, (c) Reverse, (d) Core-rim I, (e) Core-rim II, and (f) Core-rim 
III (see Fig. 2b and main text for zoning configuration details). For each zoning style, three-dimensional diffusion models were 
performed for durations of 3, 6, 12, 24, 48, 72, 144, 288 and 576 h and sectioned for ground-truth maps and profiles across the a‒
b, b‒c, a‒c planes (2D models) and along a, b, and c (1D models). Best-fit 1D and 2D times are presented here as ratios rt. Green 
vertical lines mark the time interval after which either the core concentration becomes affected (for all simple zoning patterns) or 
the core or rim concentration is affected (for core-rim zonings). 

The above observations are interpreted by grouping models according to zoning style; the occurrence of 
time mismatches within simple zoning models (normal I and II, reverse) after a certain duration (Fig. 
A8a, b, and c) is associated with the diffusion fronts reaching the crystal center, a process which is not 
modeled adequately in 2D and 1D. The main difference between these three zoning styles is the time after 
which the composition is lost at the core in the 3D model, leading to slight changes in the progression of 
mismatch with total duration. The time after which the initial concentration is lost at the core depends on 
the diffusivity within the crystal for each zoning (i.e. D for the Fo70-Fo80 reverse zoning is globally faster 
than for the Fo75-Fo70 normal zoning, which is itself faster than for the Fo90-Fo70 configuration). The good 
agreement between 1D, 2D and 3D runs performed using the ‘core-rim I’ zoning results from the 
chemical equilibrium permanently maintained between the Fo80 crystal rim and the Fo80 melt (Fig. A8d); 
the lack of a driving force for diffusion at the crystal rim implies that the effects of merging diffusion 
fronts near a (cf. Fig. A7) are no longer observed. Finally, core-rim zonings II and III display misfit 
progressions similar to simple core-melt models, with highly variable  rt ratios along a or across a-c, and 
excellent matches along the other directions but only up to durations ~72h (Fig. A8e and f). We interpret 
this as follows; once this time interval is reached, the initial rim and/or core concentrations are lost, and 
taking the apparent Fo to construct the initial profile results in time underestimates. 
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S10. Effects of initial concentration loss at the crystal core. 

Most diffusion models from the main article that underwent the random sectioning exercises were stopped 
at durations t3D=144 h (6 days). Except for the case of core-rim zoning II and III, the initial concentrations 
at the cores of the olivines were mostly unaffected after these diffusion times (also see Fig. A8 above). To 
investigate the effects of significant core concentration loss, two additional 3D diffusion models were 
performed using the normal II zoning (Fo75 to Fo70) for durations of 576, 864, and 1152 h (24, 36 and 48 
days respectively) and subsequently sectioned and used execute 1D models (anisotropy-corrected, with 
extremum Fo as initial concentration).  

The results are plotted as percent difference from the true time 
(Figure A9). As the initial Fo is progressively lost at the core, the 
non-filtered data shows modes that shift to significant time 
underestimates (from a mode centered on the true time at t3D= 6 
days to a mode centered around -40% the true time at t3D= 48 
days), and the appearance of data at large time overestimates 
(around +140-160% the true time). Filtered datasets (also see 
main text and Figure 11 for definition), are only slightly better 
than their unfiltered equivalents and preserve the time 
overestimate population. Therefore, we conclude that as the core 
loses the initial concentration, even the 1D models collected in 
suitable sections and corrected for anisotropy reproduce the true 
time poorly (usually underestimates), with the additional 
possibility of sampling some large overestimates. These results 
are similar to those obtained for the core-rim models II and III, 
for which the loss of initial concentrations at the rim and core 
induced a shift towards time underestimates (cf. Figure 11). 
Thus, overall time underestimates models collected within off-
center, randomly oriented sections can result from (1) 
overcorrecting for anisotropy (section S7), short concentration 
profiles (section S6), and (3) the loss of the initial concentrations 
at the rim or at the core. 

Figure A9. Distribution of time under and overestimates in a normally zoned 
olivine with increasing total diffusion time and loss of initial concentration at 
the core. The upper left diagram shows the olivine model used, with an ideal 
along-c transect shown at various durations (upper right plots for each 
distribution) to illustrate the extent of core concentration loss. Best-fit 
Gaussians are also displayed, with the corresponding modes and standard 
deviations. When two modes are observed, two separate Gaussian curves are 
shown. 

 

S11. Separating suitable from unsuitable sections using BSE images. 

The simplest and most cost-effective way to filter through an olivine population for sections suitable for 
1D diffusion modeling is to use BSE images collected at the SEM or the microprobe. Images of each 
olivine candidate are acquired during a reconnaissance session, and can be input into most image 
processing software for more precise discrimination. Here, we use the freely available ImageJ program 
four our worked example. Images are loaded into the program, the ‘straight/line’ selection tool is used to 

American Mineralogist: October 2015 Deposit   AM-15-105163

11



perform a line transect through any part of the olivine, and the ‘Plot profile’ function (AnalyzeàPlot 
Profile, in the user interface) is used in ‘Live’ mode. These transects are usually noisy, but allow to 
identify the main desired/undesired features within olivine sections. An example of 6 sections is shown 
below (see Figure A10).   

Figure A10. BSE images of olivines from Kilauea (Hawaii) and Piton de la Fournaise (Reunion) volcanoes displaying important 
features used to select suitable and unsuitable sections for 1D diffusion modeling. Three sections display a clear horizontal 
plateau, while two show little to no discernable plateau, and one may show a slightly dipping plateau. Even though the data is 
noisy and may contain artificial peaks related to cracks or inclusions, this is a cheap and amply sufficient way to perform the 
filtering procedure described in the text. 
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