Cation order-disorder in Fe-bearing pyrope and grossular garnets: A ²⁷Al and ²⁹Si MAS NMR and ⁵⁷Fe Mössbauer spectroscopy study

AARON C. PALKE^{1,*}, JONATHAN F. STEBBINS¹, CHARLES A. GEIGER² AND GEROLD TIPPELT²

¹Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305-2115, U.S.A. ²Department of Materials Science and Physics, Section Mineralogy, Salzburg University, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria

ABSTRACT

A suite of Fe-bearing natural and synthetic grossular-rich [(Ca,Fe)₃(Al,Fe)₂Si₃O₁] and pyrope-rich [(Mg,Fe)₃Al₂Si₃O₁₂] garnets were investigated using ²⁷Al and ²⁹Si MAS NMR and ⁵⁷Fe Mössbauer spectroscopy. This was done to study the state of cation order-disorder in garnet solid solutions by analyzing paramagnetically shifted resonances in high-resolution NMR spectra. The Mössbauer spectra, along with electron microprobe results, give the concentrations of Fe^{2+} and Fe^{3+} and their site occupancies, even in grossular samples with very low concentrations of Fe. MAS NMR spectra were collected on Fe²⁺-bearing grossular- and pyrope-rich garnets with up to 25 mol% almandine component and on other Fe³⁺-bearing grossular samples with up to 9 mol% andradite component. Despite peak broadening and signal loss, structural information was even obtained from garnet with relatively high Fe contents (25 mol% almandine component). Paramagnetically shifted NMR peaks, related to the presence of Fe²⁺, were observed in grossular samples and are similar in nature to those reported previously for natural, relatively low-Fe²⁺ pyrope garnets by Stebbins and Kelsey (2009). Additional NMR peaks appear as the concentration of Fe²⁺ increases, reflecting an increase in the average number of neighboring Fe²⁺ cations around AlO_6 and SiO_4 groups. These newly observed peaks hold potential to provide information concerning the presence or absence of short-range ordering in certain Fe-bearing silicate garnets. The effect of Fe³⁺ on the MAS NMR spectra of garnet appears to be less pronounced, because it does not produce any observable paramagnetically shifted resonances.

Keywords: NMR spectroscopy, Mössbauer spectroscopy, pyrope, grossular, almandine, garnet, paramagnetic shifts, short-range order