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Appendix: Thermodynamic relations and Equation of 
State 
Rosenfeld and Tarazona (1998) derive an expression from a fundamental-measure energy 
functional for hard spheres and thermodynamic perturbation theory for the functional 
dependence of the potential energy (U) on volume (V) and temperature (T) in a dense 
classical liquid: 

 U V ,T( ) = a V( ) + b V( )T
3
5  (1) 

This expression beautifully represents the potential energy-temperature relations along a 
given isochore obtained from our MD simulations of liquid Mg2SiO4 (Appendix Fig. 1, 
Appendix Table 1). 
 
The a(V) and b(V) functions may be parameterized using simple polynomials of volume 
(Appendix Fig. 2, Appendix Table 2, e.g. Saika-Voivod et al., 2000). 
 
Given the representation of U embodied in Equation 10, the internal energy, E, is 

obtained by addition of the kinetic energy, 
3n
2
RT , where n in this case is seven, the 

number of atoms in the formula unit of Mg2SiO4 liquid: 

 E V ,T( ) = a V( ) + b V( )T
3
5 +
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2
RT  (2) 

From Equation 11 the isochoric heat capacity is readily obtained by differentiation with 
respect to T at constant V 
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It should be appreciated that since values of the function b(V) are positive (e.g., Appendix 
Fig, 2b), the heat capacity of a Rosenfeld-Tarazona fluid will decrease with increasing 
temperature asymptotically to the value 3nR/2. 
 
An internally consistent equation of state (EOS) may be constructed from Equation 11 by 
first finding an expression for the Helmholtz free energy (A), which is formally defined 
as 
 A V ,T( ) = E V ,T( ) ! TS V ,T( )  (4) 
The temperature- and volume-dependence of the entropy (S) may be obtained from 
Equation 11 and the thermodynamic identity dE = TdS ! PdV .  From this identity it 
follows that 
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which together permit the entropy to be evaluated as 
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Substitution of Equation 11 into Equation 14 gives a model expression 
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Note that the entropy is defined relative to that at a reference volume (V0) and 
temperature (T0) – that is, with respect to an unspecified constant - and that the model 
expression requires adoption of an EOS along the reference isotherm [P(T0, V)].  The 
selection of this EOS is arbitrary. 
 
Substitution of Equations 11 and 15 into Equation 13 gives a model expression for the 
Helmholtz free energy compatible with Equation 10 
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An EOS is obtained from Equation 16 by differentiation, i.e., P = !
"A
"V

#
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&
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T
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This result demonstrates that a Rosenfeld-Tarazona compatible EOS – P(V,T) – can be 
built from any isothermal EOS of choice, and that the temperature dependence of the 
pressure arises through the parameterization of the potential energy of the fluid.  In this 
paper we adopt for P(T0, V) the Universal EOS of Vinet at al. (1986; 1987; 1989) 
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.  In Equation 18, K
v
, K

v

'  and V
v
 are constants (fit 

parameters of the EOS), whose values correspond to the bulk modules, its pressure 
derivative, and the zero pressure volume, respectively, all at the temperature T

0
.  A fit to 

the nominal ~3500 K MD data for Mg2SiO4 liquid is presented in Appendix Table 3.  The 
model EOS is presented and compared to the MD simulation data in Appendix Figure 3. 
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In the low temperature limit, the Helmholtz energy (Eq. 16) reduces to A V ,T( ) ! a V( ) , 
and by inspection of Appendix Fig. 2a it is clear that in the case of our model calculations 
for Mg2SiO4 liquid there is a range of volume over which the liquid is thermodynamically 
unstable with respect to unmixing at sufficiently low-T; this region corresponds to the 
portion of the curve that is concave down, and in this case the coexisting liquids differ in 
structure but are identical in composition.  The loci of (V,T)-points corresponding to zero-
curvature of A is known as the spinoidal and is given by the thermodynanic condition of 
phase instability (Prigogine and Defay, 1954): !P
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for our thermodynamic model.  The highest temerature that satisfies Equation 19 is the 
critical point (the temperature of the onset of unmixing).  We find this T to be below 100 
K, a condition corresponding to the deeply supercooled region. 
 
A compete set of thermodynamic functions can be developed from Equations 16 and 17 
and the numerical evaluation of these functions requires no further paramterization of the 
MD data. 
 
The Gibbs free energy (G = A + PV ) is 
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The coefficient of “thermal pressure,” !P
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, is given as 
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The bulk modulus, K = !V
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#
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, is found to be 
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may be written 
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Finally, our model expression for the Grüneisen parameter, ! =
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C
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, is given by 
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Appendix Table 1. Coefficients for the Rosenfeld-Tarazona (1998) model expression for 
the potential energy of a dense fluid: U(V,T) = a(V) + b(V)T3/5 
ρ (kg/m3)   b (V) 

(kJ/mol) 
σ a (V) 

(kJ/mol)  
σ 

2753.83 4.518 0.011 –5803.4 1.5 
3000.07 4.569 0.0043 –5825.9 0.58 
3075.07 4.574  –5829.2  
3150.07 4.595 0.0067 –5833.4 0.91 
3225.08 4.608  –5836.1  
3300.08 4.644 0.0099 –5839.7 1.3 
3500.08 4.744 0.024 –5845.9 3.3 
3800.09 5.122 0.016 –5871.2 2.3 
3900.09 5.330 0.0084 –5886.8 1.3 
4200.10 5.835 0.021 –5895.6 3.2 
4350.10 6.094 0.015 –5890.3 2.3 
4500.10 6.388 0.011 –5880.0 1.7 
Notes: Model equations are compared to MD simulation data in Figure 12 (in text). 
 
 
 
 



American Mineralogist AM-09-023, Martin et al. May/June 

Appendix Table 2. Polynomial parameterizations of the Rosenfeld-Tarazona (1998) 
functions for the potential energy 
 
i a (V) 

(kJ/mol)  
b (V) 
(kJ/K3/5mol)  

0 19790.2 52.7838 
1 –437356. –471.962 
2 3046190. 1706.03 
3 –11179100. –2690.69 
4 23103100. 1553.34 
5 –26316700.  
6 14597600.4  
7 –2621980.  

Notes: 
   
a V( )= a

i
V

i

0

n

!  and 
   
b V( )= b

i
V

i

0

n

! ; V has units cm3/gm or 1000 × the quantity 

in units of m3/kg (see Appendix Fig. 1).  
 
 
Appendix Table 3. Parameterization of the Universal EOS (Eq. 9) along the nominal 
3500 K isotherm (T0 = 3582.75 ± 45.75 K) 
Parameter Value Units 
Vν 8.08642 × 10–4 m3/kg 
Kν 0.131575 GPa 
K′ν 11.8272  
Note: The standard error on residuals for pressure recovery from this EOS is 0.059 GPa. 
 
 
 
Note that the references cited in this appendix are included in the reference list of the 
article, except for one which is below. 
 
Prigogine, I. and Defay, R. (1954) Chemical Thermodynamics, 543 p., Longmans Green 
and Co., New York. 


