Supplementary data 1 2 Three sources of CO₂ were used in the experiments: hydrous oxalic acid, 3 H₂C₂O₄•2H₂O (HOX), silver oxalate, AgCO₂, (AgOX), and silver carbonate (Ag₂CO₃). For fluid mixtures up to X_{CO_2} of 0.5, reagent HOX was used with varying amounts of 4 H₂O. The HOX (Fisher Certified) is in the form of limpid crystals of about 10 µg, which 5 could be loaded individually to achieve a desired fluid mass. This material generates a 6 7 fluid mix of molar proportions 2H₂O:2CO₂:H₂ during an experiment. The H₂ must be purged by buffering at high oxygen fugacity (f_{0_2}). Experiments in this laboratory and 8 elsewhere (Rosenbaum and Slagel 1995) have shown that HOX reliably generates a 50 9 mol % CO₂ mixture with H₂O if buffered externally with hematite-magnetite-H₂O, with 10 11 the Pt capsule acting as a H_2 -permeable membrane. The principal disadvantage of this method is that a welded Pt inner capsule must be used to contain the experimental charge, 12 since most of the large capsule volume is filled with the buffer mix (totaling about 100 13 14 mg). This limits the CO₂-H₂O fluid mass to only about 5 mg and the crystal mass to 0.5 mg. For high CO₂ fluids the quartz weight loss would be too small to measure with the 15 buffered capsule method. 16

Experiments with >50 mol % CO₂ used AgOX as a CO₂ source. AgOX is a conveniently loaded material (small coherent pellets of powder), but it decomposes at low *T* and cannot be oven dried. Previous work in this laboratory (Ferry et al. 2002) has shown that our material (ICN batch #23962-A) has a small amount of adsorbed H₂O, and, moreover, the slightly gray color indicates probable slight photodecomposition to Ag metal. For these reasons the volatile yield of AgOX had to be calibrated by weight loss measurements. An aliquot of about 50 mg of AgOX with or without additional H₂O was

S-1

24	weighed into a segment of the large Pt tube and welded without significant mass loss.
25	This charge was run at the same conditions as all experiments (800 °C, 10 kbar) for
26	periods of up to two days and quenched in the usual manner. The retrieved capsules were
27	inflated due to CO ₂ pressure and showed no mass loss. A capsule was punctured with a
28	tiny hole under liquid N_2 using a sharp needle, and then placed in a refrigerator freezer
29	for up to one hour. This procedure is necessary to avoid spraying of liquid H_2O upon
30	puncture. The capsule was weighed at intervals until a constant weight (the "plateau
31	weight", Table S1) was attained, which usually took about 1/2 hr. Comparison weighings
32	with liquid H_2O showed that the puncture hole was too small to allow weighable
33	evaporation of liquid water at room temperature. The plateau weight was taken to
34	indicate, by subtraction, the CO_2 yield. The perforated capsule was then heated at 115 °C
35	for 15 minutes followed by 15 minutes at 350 °C. The additional weight loss was taken as
36	the total H_2O yield. Four such volatile loss experiments were performed (Table S1). The
37	runs consistently showed that a small fraction of the expected volatile yield of the AgOX
38	was actually H ₂ O. They also revealed a small additional CO ₂ mass deficiency, which
39	presumably results from photodecomposition. A typical gas yield analysis is shown in
40	Fig. S1. The four yield tests were averaged to obtain corrected CO_2 and H_2O yields: 95.5
41	wt% of the expected CO ₂ yield, based on AgCO ₂ stoichiometry, and 2.79 wt% of the
42	expected CO ₂ yield, respectively.
43	A third starting fluid source consisted of silver carbonate (Ag ₂ CO ₃ : Aesar

44 99.999% certified) and HOX in equimolar proportions, so that the excess H_2 of the HOX 45 and the excess O of the Ag_2CO_3 were compensated. A serious disadvantage of this CO_2 46 source is the very large amount of Ag and the relatively small amount of CO_2 yielded by

S-2

47	the Ag_2CO_3 . For reasons not clear, the quartz crystals sometimes became coated with Ag
48	metal and could not be easily cleaned. A few runs were made with the quartz crystal
49	protected by a perforated inner Pt capsule, but in these experiments the perforations were
50	plugged by Ag metal, and the crystals yielded anomalously low weight losses compared
51	to results based on other methods. These manifestly underequilibrated runs are not
52	reported in Table 1, text. Thus, the $Ag_2CO_3 + HOX$ mix was less satisfactory as a CO_2
53	source at high CO_2 mole fractions.
54	Activities of H_2O and SiO_2 from this study and others at different P and T are
55	tabulated in Table S2, and plotted in Fig. 2C, text.
56	
57	References cited
58	Anderson, G.M. and Burnham, C.W (1965) The solubility of quartz in supercritical
59	water. American Journal of Science, 263, 494–511.
60	Ferry, J.M., Newton, R.C. and Manning, C.E. (2002) Experimental determination of the
61	equilibria: rutile + magnesite = geikielite + CO_2 and zircon + 2magnesite =
62	baddeleyite + forsterite + $2CO_2$. American Mineralogist, 87, 1342–1350.
63	Rosenbaum, J.M. and Slagel, M.M. (1995) C-O-H speciation in piston-cylinder
64	experiments. American Mineralogist, 80, 109–114.
65	
66	Figure caption
67	Figure S1. Volatile yield from silver oxalate decomposition in a welded Pt capsule at 800
68	°C and 10 kbar (Run 32, Table S1). The quenched, inflated capsule was punctured
69	under liquid N_2 and left in a freezer for 1 hr before weighing began.
70	

S-3

Table 51: Volatile yields of silver oxalate (12,07X).									
Expt.	Run	AgOX	H_2O	Capsule	Capsule	Plateau	Dried	% CO ₂	% H ₂ O
no.	Time	(mg)	(mg)	Out	change	weight	Weight	(of nom-	(of nom-
	(hr)			(mg)	(mg)	(mg)	(mg)	inal CO ₂)	inal CO ₂)
32	8	50.661		764.469	-0.020	750.427	750.086	95.66(2)	2.32(2)
33	13	46.887		713.761	-0.028	700.873	700.396	94.86(2)	3.51(2)
34	9	46.260		732.112	-0.043	719.312	718.950	95.49(2)	2.70(2)
42	40	51.842	1.961	955.046	+0.005	940.620	938.262	96.03(2)	2.64(3)
							Ave:	95.51(24)	2.79(25)

Table S1. Volatile yields of silver oxalate (AgOX).

Weighing uncertainty is 2 μ g (1 σ); parenthetical entries are 1 σ or 1 standard error in last digit(s).

Table S2. Parameters derived from selected experimental studes of quartz solubility in H₂O-CO₂.

					$log \frac{a_{SiO_2}}{a_{SiO_2}}$				
$X_{ m H_2O}$	$\log a_{\rm H_2O}$	X_{SiO_2}	$\gamma_{{ m SiO}_2}$	$a_{\rm SiO_2}$	$\log \frac{10g}{a'_{\text{SiO}_2}}$	Notes			
Novgorodo	Novgorodov (1975), 700°C, 5 kbar, $K_{md} = 242$								
1	0	7.12E-03	0.413	2.94E-03	0				
0.91	-0.036	4.60E-03	0.482	2.22E-03	-0.122				
0.88	-0.046	3.94E-03	0.508	2.00E-03	-0.167				
0.87	-0.050	3.23E-03	0.541	1.75E-03	-0.225				
0.81	-0.071	2.61E-03	0.578	1.51E-03	-0.290				
0.72	-0.104	1.79E-03	0.643	1.15E-03	-0.408				
0.55	-0.181	6.62E-04	0.796	5.27E-04	-0.746				
0.527	-0.194	6.70E-04	0.795	5.33E-04	-0.742				
0.513	-0.202	7.50E-04	0.//9	5.84E-04	-0./01				
0.503	-0.208	5.38E-04	0.819	4.5/E-04	-0.808				
0.30	-0.210	5.28E-04	0.820	4.30E-04	-0.829				
0.495	-0.213	3.20E-04	0.820	4.34E-04	-0.830				
0.32	-0.559	2.00E-04	0.898	2.33E-04	-1.100				
Novgorodo	ov (1975), 70	00°C, 3 kbar	$K_{md} = 3$	09	_				
1	0	4.79E-03	0.436	2.09E-03	0	From AB65			
0.91	-0.036	2.79E-03	0.525	1.47E-03	-0.154				
0.77	-0.090	1.39E-03	0.643	8.97E-04	-0.367				
0.50	-0.225	3.70E-04	0.839	3.11E-04	-0.828	+graphite			
0.36	-0.339	1.74E-04	0.911	1.58E-04	-1.120	+graphite			
0.33	-0.371	1.51E-04	0.921	1.39E-04	-1.176				
0.23	-0.507	9.07E-05	0.949	8.61E-05	-1.385	+graphite			
Walther an	d Orville (19	983), 600°C,	2 kbar,	$K_{md} = 250$					
1	0	2.17E-03	0.604	1.31E-03	0.000	From AB65			
0.977	-0.010	1.91E-03	0.626	1.19E-03	-0.040				
0.964	-0.015	1.67E-03	0.649	1.08E-03	-0.083				
0.902	-0.039	1.25E-03	0.696	8.73E-04	-0.176				
0.889	-0.044	1.20E-03	0.703	8.43E-04	-0.191				
0.837	-0.063	9.49E-04	0.740	7.02E-04	-0.271				
0.702	-0.115	4.70E-04	0.836	3.93E-04	-0.523				
0.689	-0.121	3.81E-04	0.859	3.27E-04	-0.602				
Shmulovic	h et al (2001), 800°C, 91	kbar K_{md}	= 252					
1	0	2.16E-02	0.261	5.63E-03	0	From S06			
0.7027	-0.102	4.47E-03	0.443	1.98E-03	-0.455				
0.6482	-0.121	3.35E-03	0.482	1.62E-03	-0.542				
0.4991	-0.189	1.86E-03	0.555	1.03E-03	-0.737				
0.4992	-0.189	1.53E-03	0.588	9.02E-04	-0.796				
0.8354	-0.059	8.87E-03	0.355	3.15E-03	-0.253				
This study, 800°C, 10 kbar, $K_{md} = 229$									
1	0	2.20E-02	0.269	5.92E-03	0	From NM00			
0.9234	-0.030	1.46E-02	0.319	4.54E-03	-0.116				
0.8216	-0.062	8.53E-03	0.394	3.18E-03	-0.270				
0.8163	-0.064	8.96E-03	0.387	3.27E-03	-0.257				
0.6663	-0.111	3.83E-03	0.522	1.84E-03	-0.509				
0.6599	-0.113	4.05E-03	0.513	1.90E-03	-0.493				
0.5748	-0.145	3.21E-03	0.552	1.59E-03	-0.571				
0.5002	-0.180	1.81E-03	0.650	1.05E-03	-0.753				
0.5000	-0.181	1.72E-03	0.658	1.01E-03	-0.768				
0.4435	-0.213	1.27E-03	0.709	7.94E-04	-0.873				
0.4379	-0.217	1.09E-03	0.732	7.11E-04	-0.920				
0.3696	-0.266	6.49E-04	0.807	4.65E-04	-1.105				
0.3180	-0.314	4.26E-04	0.857	3.26E-04	-1.259				
0.2528	-0.391	1.88E-04	0.926	1.59E-04	-1.570				

Abbreviations: AB65, Anderson and Burnham (1965); NM00, Newton and Manning (2000); S06, Shmulovich et al (2006). K_{md} calculated using Eq. 5, text.

Capsule weight (mg)

Newton & Manning, Fig. S1