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A new explanation for the unusual critical behavior of calcite and sodium nitrate, NaN©
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ABSTRACT

The phase-transition behavior of both calcite and the isostructural compound, NaCong
been thought to be anomalous. In particularfthétical exponent for the orientational order-disor-
der transitions takes on a value close to tricritical beha@iorQ.25) in both materials, and in NajNO
two crossovers to regimes wh@e 0.22 and thef = 0.41 have been reportedTass approached.
The most significant puzzle was why both materials should appear to be tricritical under ambient
conditions of both pressure and the conjugate field. The experimental work on these materials is re-
analyzed in the light of recent progress in understanding two-dimensional magnetic ordering. It is
shown that the experimental results are fully consistent with the two-dimensional XY model. Unlike
the tricritical model, this gives a simple physical explanation for the disordering process and ob-
served critical exponents. In particular, it supports other recent experimental findings from calcite
and NaNQ that the orientational order-disorder occurs through continuous planar rotations of the
carbonate and nitrate groups, rather than discrete jumps.

INTRODUCTION lar ions are orientationally disordered about their threefold axes,

Over the past 90 years, an astonishing number of pap\gllgich are parallel to the crystallograplt.uiaxi.s. One signifi- .
have been written on the order-disorder phase transitionsCit difference between the two materials is the phase-transi-
calcite (CaC@), and the closely related material NajN@ith ~ tion temperatures: for NaNOT. = 549 K, whereas for calcite,
mineral name nitratine); a conservative count puts the numder- 1260 K. Experimental studies of calcite are made difficult
at around 80! There are several reasons for the abiding inteR¥sthe fact that it decomposes into CaO and &@bout 1100
in these phase transitions: (1) geologically speaking, calcitdjsunder normal conditions, so that the phase transition may
an important material, and the order-disorder phase transitfJiy P& observed if the sample is kept in a partial pressure of
has a marked influence on the calcite-aragonite transition tf: For this reason, there have been many more experimental
is widely used as a geobarometer and geothermometer (Sgijlies of the phase transition in NadN@hich | will there-
and Viswanathan 1976; Redfern et al. 1989); (2) both calcf@® concentrate on.
and NaNQ represent some of the simplest compounds con-

L i ) . _ PREVIOUS WORK
taining both ionic and covalent interactions and so are inter- . o o .
esting from the point of view of developing simulation ©One obvious possibility for the mechanism is a continuous

techniques; and (3) attempts to assign the phase transitiond'¢§€ase with temperature of the angular oscillation of the
standard models have been largely unsuccessful, thus revBEUPS about the axis, leading eventually to a cooperative
ing a degree of complexity that is surprising in such Chen{f-ee rotation abové,. This so-called free-rota_thn model was
cally simple materials. first suggested by Kracek et al. (1931) and initially received a

This paper aims to review recent experimental work on tH¥9€ amount of support, until an ?Iternatlve model was pro-
problem and to provide a simple and transparent re-interpret@Sed, the “two-position disorder” model. Here, the nitrate
tion of it, in view of recent progress in understanding mag'oups become progressively more disordered between the two
netic phase transitions. possible orientations of the low form, which are achieved by

The phase transitions in both calcite and Nah@olve an  60° flips of the groups about tieaxis. AtT, the space-aver-
orientational ordering of the carbonate and nitrate groups, Aged correlation function alorgends to zero, and the nitrate
spectively, on cooling. The symmetry change isnR3 R3c  9roups flip randomly between the two pc.)'smons. This modgl
in both cases, which is marked by the appearance of superlai{f@ first put forward by Ketalaar and Strijk (1945), and until
Bragg reflections at th&-points of reciprocal space, i.e., the’ery recently was the generally accepted model. The two mod-
(0,0,3/2) point indexed using the hexagonal setting ofiR@  ©!S are illustrated schematically in Figure 1.

the high-temperature phases the nitrate and carbonate molecul us, the free-rotation model is analogous to the XY model,
where a magnetic dipole can take any orientation ir-jhgane

perpendicular to theaxis, while the two-position disorder model
is analogous to the standard Ising model. However, the nitrate
*E-mail: mark.harris@rl.ac.uk and carbonate groups are not dipoles, and so the free-rotation
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and two-position disorder models are not formally equivalentith 60° flips of the nitrate groups, in the manner of the two-

to these two spin models in terms of their microscopic Hamjposition disorder model. For calcite, Markgraf and Reeder

tonians. Instead, the equivalence comes through the natur¢1l®85), Dove et al. (1998), and Swainson et al. (1998) have all

the critical fluctuations, which drive the phase transitions imade similar observations: instead of statistical disorder, only

both the structural and spin models, as discussed below. large-amplitude planar librations of the carbonate groups seem

] ] ] ] ) to occur. Therefore, the orientational disorder in both calcite

Experimental studies of the disordering mechanism and NaNQis driven primarily by large-scale planar rotations
Recent work has cast doubt on the validity of the two-posf the carbonate and nitrate groups. The phase transitions are

tion disorder model as an accurate description of the phase tittnen precipitated by the librational amplitude of the carbonate

sitions in calcite and NaNQO Data from X-ray structure and nitrate groups exceeding a critical threshold, rather than as

refinements of NaNg¥for T < T, — 26 can be described equallya result of a statistical number of “wrong” orientations.

well by both the two-position disorder model and a model in- ) N

voking orientational disorder in the manner of the free-rot&XPerimental work on the @ critical exponent

tion model (Lefebvre et al. 1984). However, close to the phase Studies of the birefringence (Poon 1988), lattice parameters

transition, forT > T, — 26, the free-rotation model provided g§Reeder et al. 1988), and X-ray superlattice peaks (Schmahl

better description of the data. Gonshorek et al. (1995) perfornaad] Salje 1989) of NaN@ave all concluded that for tempera-

a high precision structure refinement of Naj\Droom tem- tures below about, — 50, the order parameter for the phase

perature T= T, — 250), and found absolutely no evidence fatransition,Q, may be expressed as

nitrate groups flipped by 80rom the ordered positions; in-

stead, a significant degree of librational motion of the nitrate Q O t# Q)

groups was detected. Because Schmahl and Salje (1989) ob-

served that the order parameter appears still to be evolving ewdreret is the reduced temperature (T, —T)/T,, andp = 0.25

at temperatures as low as that of the Gonshorek et al. exp€rable 1). In calcite, a neutron diffraction experiment has also

ment, the disordering mechanism is probably not associatdzserved a value @ = 0.25 (Dove and Powell 1989). This is

FIGURE 1.Schematic representations of
a carbonate/nitrate group looking down the
¢ axis for the orientational order-disorder
transitions in calcite and NaNO(a) The
free-rotation model.k) The two-position
disorder model.

TaBLE 1. Values for the 3 critical exponents for calcite and NaNO,

B o

Tricritical mean-field (Landau) theory 0.25 0.5
3d 3-state Potts model 0.21 0.54
3d Ising model 0.326 0.106
3d XY model 0.345 -0.01
2d XY model 3m?/128 = 0.231 0.36
Calcite (neutron diffraction) 0.240(8) -
NaNO; (X-ray and neutron diffraction) 0.228(2) for t> 102 -

0.34(2) for t< 1072 -
NaNO; (spontaneous strain) 0.22(1) -
NaNO; (birefringence) 0.22(1) -
NaNO; (heat capacity) - 0.40(6)*, 0.35(6) 1
NaNO; (thermal expansion) — 0.34(1)

Notes: The exponents are for various theoretical models and also extracted from previously published experimental data. See text.
* Reinsborough and Whetmore.
T Jriri et al.
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the value for a tricritical phase transition described within tA&hereas this logarithmic correction can be mis-identified as a
framework of mean-field (or Landau) theory. Tricritical behavslowly varyingB exponent (Fig. 2), it would only result in an
ior conventionally results at a point in thieP-H phase dia- effective value off = 0.22 between reduced temperature$ 10
gram (whereP is the pressure, and can be any conjugate <t < 1073, i.e., within about 0.5 K of the phase transition in
variable parameter such as the magnetic field, or the conchiaNGO;. Experimental observation places the crossov@rto
tration of a chemical species) where lines of first and secod®2 much further from the transition, at ab®ut+ 30. Hence
order phase transitions meet so that three phases coewistcan discount the possibility that the crossover is due to the
(Griffiths 1970). Finding the tricritical valyg= 0.25 thus sug- breakdown of tricritical behavior in the critical region. Lynden-
gests that the transitions in both calcite and Nabi® inter- Bell et al. (1989) and Schmahl and Salje (1989) instead sug-
mediate between first order (discontinuous) and second ordested that the change in the valug &m 0.25 to 0.22 is due
(continuous) behavior, and that both materials containt@the existence of non-critical fluctuations into a further or-
tricritical point in their phase diagrams at conditions of ambilered phase, associated with fh@oint of reciprocal space,
entP andH. which corresponds to the (1/2,0,2) point in the hexagonal set-
What is perhaps more interesting is that as the transitiortiimg. The unusual critical behavior might then be explained as
NaNGQ; is approached, the value pfappears to be reducedthe effect of strongly competing order parameters, one associ-
from 0.25 to 0.22, which happens at a temperature of approaied with theZ-point, the other with th&-point, with thez-
mately T, — 30. There is currently no indication that a similapoint order parameter winning. In support, a large body of
effect happens in calcite. In addition, a recent neutron diffraexperimental and computational work now exists for both cal-
tion study of the critical scattering from Nahkas shown that cite and NaN@ pointing toward the existence of such a non-
an additional crossover occurs at abbut 5, where the order critical phase associated with tRepoint (see in particular:
parameter changes again, this time to a value determirfed dynden-Bell et al. 1989; Dove et al. 1992; Hagen et al. 1992;

= 0.41 (Payne et al. 1997). Harris 1993; Ferrario et al. 1994; Harris et al. 1998a, 1998b).
) ) However, it still does not answer the question of why the tran-
The outstanding questions sitions in both materials are close to being tricritical in the first

The experimental work has thus highlighted two principlplace. In addition, the suggestion that competing interactions
questions: (1) why does tlfieexponent change in NaN@nd
(2) why isP close to being tricritical in both calcite and NajR0O
This latter question is at first sight the most puzzling, because
it is extremely unlikely that a tricritical point should occur at
conditions of ambier® andH, in both calcite and NaNQOIn 0
case one is inclined to doubt whether it is really so unlikely, L AL L
consider the case of the alkali halides,8Xand NX,Br, where L
X is either H or D (Seeck et al. 1998). These compounds are L
chemically and structurally very similar under ambient condi- L
tions, and all contain well-attested tricritical points in tiejf- =
phase diagrams. However, the positions of the tricritical poirﬂ’%
are very different. For instance, the tricritical point in8H  @p L
occurs at a pressure of 1500 bar, while in,8I0t is an order 2
of magnitude lower, at 150 bar. In hBt it is at a very differ-
ent pressure again: 3250 bar. Clearly, changes in the chemis¥
have a profound influence on the positions of the tricritical )
points, and we would expect exactly the same argument to ho& L
for calcite and NaNg) if indeed they were truly tricritical.
Because no explanation for this problem has been put forward
until now, | will discuss it later, after discussing previous at-
tempts to answer question 1.

The most plausible explanation for the apparent change in  q-1 /vl il il v
the value of3 from 0.25 to 0.22 in NaNgs that strong critical 105 10- 103 10~ 10-1
fluctuations are present at temperatures clogg. tbhese re-
sult in a breakdown of mean-field theory over a temperature (= (Tc—-T)/Tc

interval known as the critical region, where the tricritical value
for B is expected not to hold. The problem with this explana-
tion is that the effect of critical fluctuations at a tricritical tran-
sition in a three-dimensional material is only to addg
logarithmic correction to the temperature dependenc® of
(Bruce 1980). Equation 1 then becomes

FIGURE 2. The order parameter for a tricritical phase transition
ith critical fluctuations—Equation 2—is shown as the solid line.
ashed line is the best fit to this line of Equation 1 itk 0.22.
Dotted line,3 = 0.25. This illustrates that an effective exponerft of
0.22 is only valid for very small reduced temperatures,40< 103
Both axes are shown on logarithmic scales, so that pure power-law
Q Ot |logt[*. (2) behavior would be linear.
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can modify critical exponents is a highly contentious one asgistems, which have significantly stronger critical fluctuations
is not in general supported by work on magnetic systems, wheran three-dimensional systems (Als-Nielsen and Birgeneau
the microscopic interactions are better understood. The pi®77). An extreme example is that of the layered antiferromag-
posal below will answer both questions 1 and 2 without theet RBCoF,, whose order parameter has been observed to fol-
need to invoke competing order parameters. It will also be évw the theoretical prediction for the two-dimensional Ising
gued that, interesting as they are,fhgoint fluctuations are a model (which is, of course, a non-mean field model) over a
“red herring” in terms of explaining the properties of the phasrige range of reduced temperature® 20< 0.7 (Collins 1989).
transitions. Strictly speaking though, the critical region is asymptotic, in
One further suggestion has been made to explain the crabg-sense that the “true” critical exponents will only be found
over in the value o from 0.25 to 0.22 in NaNQThis sug- at vanishingly small reduced temperatures. But whatever the
gestion was made by Schmahl and Salje (1989), who noticgge of the true critical region, it is a very frequent empirical
that the three-dimensional 3-state Potts model has a theoretitsdervation that the non-mean field power law behavior ex-
value off3 =0.21 (Table 1). This model is appropriate for sy¢ends out to reduced temperatures0.1 in magnetic materi-
tems where the order parameter can have a choice of three &kd; particularly when the interactions are strongly two
ues when the symmetry is broken, whereas for instance thimensional.
2-state Potts model is essentially the Ising model. Schmahl andWe might then consider whether we can apply the univer-
Salje proposed that the 3-state order parameter is related sality principle to calcite and NaNCFirst, we need to deter-
type of wetting phenomenon where domains of Fhgoint mine qualitatively the length scale of the critical interactions.
structure form as interfaces between anti-ordered domainsMiést magnetic and structural order-disorder phase transitions
the conventionaZ-point structure. The interface thus corre{with the possible exception of ferroelectrics) are driven by
sponds to a pseudo-spin 0 between areas with pseudo-spinsheirt-range forces. In the case of molecular orientational or-
and —1. However, there are two problems with this proposdering transitions this is due to the fact that, although relatively
(1) more recent work shows that the suggeBtgaint struc- long-range dipolar and multipolar interactions are always
ture is not energetically degenerate with Zapoint structure present, the transitions are controlled on a very short-range scale
(Dove et al. 1992) and (2) fluctuations into #point phase by the steric constraints of molecules impinging against each
are not critical fluctuations, while fluctuations into #oint other as they are reorganized. Whereas there is a displacive
structure are. Therefore, tifepoint structure cannot now becomponent to the phase transitions in both calcite and NaNO
considered to represent the third state of a 3-state order parémecausec changes quite markedly), even this is a result of
eter, and so there is no clear physical basis for how the 3-sthtese steric considerations. Hence, to a first approximation,
Potts model might apply to calcite and NajNO calcite and NaN@are driven mostly by short-range forces, and
so will have large critical regions like magnetic phase transi-
UNIVERSALITY AND SPIN MODELS tions. In that case, mean-field theory should not apply except
The universality principle for temperatures far from,, implying that we can assign the

The universality principle is fundamental to the current uiransitions to a universality class and compare their behavior
derstanding of phase-transition behavior inside the critical MLth spin models.
gion. Put simply, it says that the values of the critical exponerAts
of any system undergoing a phase transition are determineH
solely by the dimensionalityd) of the system, the dimension- At first sight, assignment of calcite and NalN© the rel-
ality (m) of the order parameter, and the relative length sca¥éant universality class appears trivial. The low-temperature
of the microscopic interactions. Each differemitr{) case then ordered phases of both materials involve three-dimensional
corresponds to a different “universality class.” Experiment@fientational ordering of the carbonate and nitrate groups, so
tests have shown universality to hold in many cases, whetMé& might expect that= 3. Also, because there is a very strong
the phase transition is magnetic, superconducting, liquid-@egree of alignment (or “anisotropy”) for the orientations of
gas, or structural. Mean-field theory ignores the dimensionile groups in the low temperature phases, we might assume
ity and is appropriate for any system that contains long-ranigié@t the groups behave effectively as Ising spins, sortket.
interactions, because the microscopic details of the Hamiltbhis is the situation essentially favored by the two-position
nian become less important. For instance, some materials digorder model, where 8@ips of the groups about their three-
dergoing ferroelastic phase transitions such agCla fold axes are equivalent to either “up” or “down” orientations
(Swainson et al. 1995; Harris et al. 1996, 1997) are dominafcin Ising spin. So we might then expect the universality class
by long-range forces to such an extent that no departure is #hbe that of the three-dimensional Ising model.
served from mean-field-type theory even extremely close to However, to be more precise, it is the dimensionalities of
T.. On the other hand, magnetic systems generally contain mile# critical fluctuations that determine the character of the phase
shorter-ranged interactions (frequently as short as only a singnsition. As discussed above, recent high precision structure
nearest-neighbor bond length), and the critical region is thegfinements suggest that the phase transitions are driven by pla-
very large. Non-classical (i.e., non mean-field) critical expayar rotations of individual carbonate and nitrate groups rather
nents are observed up to large reduced temperatures, typictin 60 flips, and so the fluctuations are more correctly de-
up tot = 0.2 or more (e.g., see Table 1 of Bramwell anscribed by the XY model, whera = 2. Furthermore, the cal-
Holdsworth 1993a). This is especially true of two-dimensionalte crystal structure is very two dimensional with respect to

ossible universality class for calcite and NaN©
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the carbonate groups, which lie in planes perpendicular to tHeldsworth demonstrated this surprising effect with the fol-
caxis. Calculations (Dove, unpublished calculations) show tHatving amusing illustration: a typical Monte Carlo simulation
the forces between carbonate groups in the planes are consiigtht contairN = 1 spins, which would giv® = 0.47, while
erably stronger than the forces between planes, by a factoacgample which was the size of a page of the average-sized
approximately 20. This means that we would expect the crigpurnal might contairN = 10*-~10" spins, which would still

cal fluctuations in both calcite and Naltd be predominantly give Q = 0.1. Consequently, all experimental samples are ex-
two dimensional in extent. This argument suggests that the pected to exhibit a conventional ordered phase and a finite or-
pected universality class is the two-dimensional XY model. Ater parameter at low temperatures, despite the findings of the
we will see, this is borne out by the published experimentaliginal KTB work, which is valid only in the limit of infinite
data. However, calcite and NahN@re not perfect two-dimen- system size. As an aside, it should be noted that finite size can
sional systems, so we might expect that at temperatures Vieeyequivalent to a whole series of related perturbations, includ-
close to the phase transition, the three-dimensional naturangf three-dimensional coupling. Significantly, Bramwell and
the ordering will come into play, as will the effective anisotHoldsworth found that the critical exponent for the order pa-
ropy. This means that we expect a crossover to three-dimeammeter of a finite-sized two-dimensional XY system can be
sional XY or three-dimensional Ising behavior to occur clos#etermined exactly as

to T.. Again, this will be shown as consistent with the experi-

mental data. This type of crossover from to two-dimensional 3 = 3m%128= 0.231 4)

to three-dimensional behavior is frequently observed in lay-

ered magnetic compounds (Collins 1989) and is simply duewdich explained the previously mysterious experimental re-
the fact that three-dimensional correlations become importaufts.

very close to a phase transition, once the much stronger two-

dimensional correlations have diverged. Another way of look- RE-ANALYSIS OF EXPERIMENTAL DATA

ing at it is to say that the weak three-dimensional interactions )

modify T, slightly from the purely two-dimensional orderingSuPerlattice Bragg peaks

temperature, which means that they are then observed over thigor calcite, the superlattice peak intensity data of Dove and

modified temperature range closelo Powell (1989) was analyzed by simultaneous least-squares fit-
) ) ting of Equation 1. One point from the original data set was
The two-dimensional XY model eliminated from the fit, which is the intensity of the (1,1,3)

Until recently, it had always been assumed that the twpeak at a temperature of 1258 K (whiere0.0016). This point
dimensional XY model does not exhibit a phase transition tasaso close to the phase transition that it is almost certainly
conventional magnetically ordered phase. Instead, theoreticahtaminated heavily with critical scattering, and so will not
calculations showed that a transition occurs on cooling torgpresent an accurate measure of the order parameter. The value
state characterized by a spatial ordering of topological defeofshe critical exponent obtained with this fitting procedure is
called vortices. This is known as a “Kosterlitz-Thoulesg3 = 0.240(8) (Fig. 3). Within the experimental error, this value
Berezinskii” (KTB) transition. The andd critical exponents is consistent with the original tricritical interpretation of Dove
may be quantified, but the exponegfisy, andv (which are and Powell (1989), but also with the value (Table 1) expected
those most easily accessible to experiment) are undefined. Wioatthe two-dimensional XY model (Eq. 4).
was then surprising was that there exist several magnetic com+or NaNQ (Fig. 4), data of Schmahl and Salje (1989) and
pounds that have microscopic Hamiltonians correspondingdbPayne et al. (1997) were scaled together to lie on a single
the two-dimensional XY model, but which undergo convercurve. Combining the data greatly increases the precisifn of
tional phase transitions, with a quantifiable order parametagcause we now have a measure of the order parameter over
and well-defined critical exponents. In particular, fhexpo- nearly three decades of reduced temperature. The clear change
nent is commonly found to be 0.23, which is close to the slope att = 102 is the crossover. Fdr> 1072 the critical
tricritical value of 0.25. exponent if§ = 0.228(2), a value extremely close to the theo-

Bramwell and Holdsworth (1993a, 1993b) solved this apetical value for the two-dimensional XY model (Eq. 4). For
parent contradiction, and in doing so provided one of the fewl0?, = 0.34(2), which is consistent with three-dimensional
rigorous results that have been discovered in the theory of phiséeg or three-dimensional XY behavior within the error. The
transitions in experimentally realizable systems, ranking alongenerally accepted values for three-dimensional Ising and three-
side Onsager’s solution of the two-dimensional Ising modelimensional XY behavior aifg= 0.326 and = 0.345, respec-
Although there is no true ordered phase in the two-dimensiotigkly (Table 1).

XY model for an infinite system, the correlation function has Only the Schmahl and Salje data taken above 400K (
power-law decay, which means that a system of finite sife3) were fitted. This is because tor 0.3, the experimental
should exhibit a finite order parameter. An estimate of the afata deviate slightly from the power law behavior. This could

der parameter at the KTB transition is be due to the fact that the critical region extends out no further
thant=0.3. However, as shown in the next section, the sponta-
Q = (2N)-6 3) neous strain and birefringence data follow a power law behav-

ior with = 0.22 out td = 0.5. The size of the critical region is
whereN is the number of spins in the system. Bramwell arttius large, and similar to that of many two-dimensional mag-
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netic systems (Collins 1989). Such a large critical region is a
signature of two-dimensional XY behavior (Bramwell and
Holdsworth 1994). This suggests that the most likely explana-
tion for the deviation of the superlattice intensity from a power
law fort > 0.3 is extinction, which is always a serious concern
. with measurements of superlattice intensities (Cowley 1987).
1 Schmahl and Salje (1989) disregarded the effect of extinction,
1 and treated the data for- 0.3 on an equal footing with the

. much more reliable data taken closef{drhis is probably the
cause of their observation of a crossover ffm0.22 close to

T., to the tricritical value of = 0.25 further fronT, (wheret >

0.1): extinction always has the effect of increafinranoma-
lously.

Payne et al. (1997) also studied the critical scattering in
NaNG; aboveT,, and were able to determine the critical expo-
102 - | nents for the correlation length and the susceptibility to be

e i 0.65(5) andy = 1.27(4), respectively. These are inconsistent
102 101 10° with mean-field behaviory(= 0.5,y = 1), but close to three-
dimensional Isingy = 0.63,y = 1.24) and three-dimensional
t= (TC—T)/TC XY behavior ¢ = 0.67,y = 1.32). Payne et al. noticed that the
scaling relation

103 |

Intensity

FIGURE 3. The intensities of the (1,1,3) and (2,1,1) superlattice 23 =dv —y 5)

Bragg peaks in calcite, measured using neutron diffraction by Dove

and Powell (1989). Note that the data are plotted with both axes i8Monly just satisfied within the experimental errors vtk

logarithmic scales to _bring out the power!aw behavior. Th_e fitted Ii.n_%s_41’ which is the value they determined closE.ttsing our

show the results qf a fit to both data sets simultaneously, with the Crltlﬁ%wly determined value @= 0.34(2), we find that the scaling

exponent determined #s= 0.240(8). relation (Eq. 5) is satisfied exactly, which provides further sup-
port for this approach. Hence, abdveve find the same three-
dimensional behavior as for beldwy for reduced temperatures
|t] <102 Presumably, if we were able to measure the critical

] B L A scattering abov@; for |t | > 16% we would find a crossover

B=0.228(2) ] back to two-dimensional XY behavior, matching the crossover

belowT.. Unfortunately, NaN@melts at a temperature corre-
sponding tot| 00.04, making this experiment practically im-
possible.

10°

Birefringence and spontaneous strain

T T

Additional studies investigated the supposed tricritical na-
ture in NaNQ (due to the experimental difficulties there are no
. additional data for calcite). Poon and Salje (1988) presented
birefringence data to illustrate their interpretation that the tran-
sition is tricritical forT < 500 K, with a crossover to a region
with B = 0.22 for 500 K <T < T.. However, as an aside they
noted that their data could equally well be fitted with the single
exponenf3 = 0.22(1). Because this involves fitting fewer pa-
T ST B SN W T B rameters to the data, this must be the more reasonable value,
4 3 2 1 o and is also consistent with the two-dimensional XY model.
10 10 10 10 10 Reeder et al. (1988) measured the temperature dependence
{= (T —T)/T of the lattice parameters in NahN@®rom this they determined
c c the spontaneous strain, and like Poon and Salje (1988) pre-
FIGURE 4. The intensities of superlattice Braad peaks of NaNosented an interpretation in terms of a crossover from tricritical
Filled circles = (123) measured usri)ng X-ray sca?tgerri)ng (Schmahl abghawor at lOW. temperatures flo= 0'22. closer td.. During
ﬂag data analysis, each of the two regions was allowed to have
a

Salje 1989). Open circles = (113) measured using neutron scattering. LS .
(Payne et al. 1997). The fitted line shows a regim@ f0.228(2) ifferent value off,, so that the tricritical region had an ef-

crossing over to a regime Bf= 0.34(2) at = 102 The temperature fective T =597 K, and th@ = 0.22 region had the “real” ob-
scale is again shown in units of reduced temperaturith T.= 553.7 served value off, = 553 K, some 10% lower. An equally
K for the Schmahl et al. data afige 548.5 K for the Payne et al. data.satisfactory fit (Fig. 5) can be obtained using a single value of

Intensity

o)

10¢ S=0.34(2)

T
ol
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FIGURE 5. The spontaneous strain data of Reeder et al. (1988) with 3? B o= 0 35(6)
a fitted line where the critical exponent was determingdl=a6.22(1). '5‘ - * 7
ﬂ B A
&
[ over the entire temperature range they analyzed (200 to 550 ¢3 B .
K), and withT, = 553 K. The exponent is determinedfas *5
0.22(1), again consistent with the two-dimensional XY model. & L
Therefore no convincing evidence exists for a crossover from J&
B=0.25t03 =0.22 in NaNQ@, and instead it is more likely that
3 = 0.22 holds over the whole two-dimensional critical range.
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Heat capacity and thermal expansion
pacty P | 103 102 101
A large lambda anomaly in the heat capacity of NalO
seen afl, [e.g., Reinsborough and Whetmore (1967) and Jriri t= |T —TVT
et al. (1995)], similar to that which occurs at a conventional c c
magnetic phase transition. In Figure 6, the above data sets were
fits to the following power-law: FIGURE 6. Heat capacity of NaNQ Top, data of Reinsborough
and Whetmore (1967). Bottom, data of Jriri et al. (1995), fits are to
AC Ot (6) Equation 6. Filled circles represent data taken b8lopen circles

data abovd.. The data are not linear, even on double logarithmic axes,

whereAC is the excess heat capacity due to the phase traf§cause the non-critical background is included.

tion, anda is the critical exponent. The experimental values of
a (Table 1) are in good agreement with each other, and withseline must have a convex shape underneath the lambda
the expectations of the two-dimensional XY model, see belomnomaly; note that the fits shown in Figure 6 include such a
In 1987, in an unpublished heat capacity study, B. Wrudlaseline. However, conventional lattice dynamics can only pre-
apparently determineal = 0.56(1), which is somewhat higherdict a concave shape to the baseline of the heat capacity as it
than my values listed in Table 1. Poon and Salje (1988) poagymptotes to the Dulong-Petit value at high temperatures. Hence,
out that Wruck’s value af is roughly consistent with that for an incorrect baseline could be the origin of Wruck’s anomalously
the three-dimensional 3-state Potts model (for which the thdogh determination ofi. In any case, Wruck'’s data and analysis
retical prediction izt = 0.54). Obtaining accurate critical ex-have unfortunately never been published, and so we must treat
ponents from heat capacity data is notoriously difficult thougthis reported value af = 0.56(1) with caution.
due to problems with ascertaining the “baseline” underneath The temperature dependence of the relative thermal expan-
the lambda anomaly, which comes from the non-critical latticgon coefficients is expected to be roughly proportionAQAT,
vibrations. Poon (1988) explains that Wruck used a lattice dyhich means that a further determination of dheritical ex-
namical model to obtain his baseline, rather than the more cqmnent can be made for comparison with the heat capacity. In
mon ad hoc method of extrapolating from temperatures far frdfigure 7, the thermal expansion data of Takeuchi and Sasaki
T.. Problems can certainly arise with this latter method, pgt992) givea = 0.34(1), in excellent agreement with the val-
ticularly when the lambda anomaly extends over a large ranges determined from the heat capacity data. No baseline has
of temperature, as in NaNCbut the more recent very high-been used in obtaining these fits.
resolution data of Jriri et al. (1995) make it clear that there is a There are no exact calculations of the heat capacity of the
significant pre-melting effect in NaNOThis means that the two-dimensional XY model, and so evidence from Monte Carlo
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calculations (e.g., Tobochnik and Chester 1979; Harris et @lymerous magnetic examples of this behavior, such as
manuscript in preparation) and experimental work is relied dBaNi,(PQ,),, whose behavior corresponds very closely to the
A truly two-dimensional XY system will have no three-dimentwo-dimensional XY model, and has a well-defined lambda
sional ordering af.. Using Monte Carlo simulations, a peak issnomaly in the heat capacity (Regnault et al. 1980).
observed in the heat capacity which has a very similar shape to a
conventional lambda anomaly, but with a slightly rounded top DiSCUSSION
for small reduced temperaturés(10?. The peak temperature  The various experimental results and predictions for the
is weakly dependent on the system size, but is always slightBlues of the critical exponents determined here are summa-
higher thanT.. Nevertheless, an effective critical exponent carized in Table 1. Agreement between the experimental deter-
be determined over a range of reduced temperature similantmations of botlw andp with the two-dimensional XY model
that over whiclf = 0.23 holds. This effective exponent turns oudre excellent. Althought there is a clear crossover to three-di-
to bea = 0.36(3) (Harris et al., manuscript in preparation). Imensional behavior in the superlattice intensity data of NaNO
experiment, there will always be a crossover to three-dimensio(fly. 4), no such crossover is apparent in the heat capacity.
ordering very close t®., and the end result is to produce a sharphis is perhaps due to insufficient experimental resolution.
spike to the rounded two-dimensional XY anomaly. There are The above analysis shows that there is little reason to be-
lieve that the phase transitions in calcite and Naldf@
tricritical from the basis of any of the published experimental
103 data, which instead are all at least as consistent with two-di-
0 RRRN rororTTi A mensional XY behavior. The two-dimensional XY model has
B . the distinct advantage that it is readily identifiable with the
physical properties of both calcite and NajN@amely that the
orientational order-disorder is driven by continuous planar ro-
tations of the carbonate and nitrate groups, and that the inter-
- actions are strongly two dimensional in nature. Furthermore,
the tricritical model has a distinct disadvantage, because it is
b highly unlikely to apply simultaneously to both calcite and
NaNG;, and has no obvious physical origin.

We can also refute the suggestion that competing interac-
tions are responsible for the critical behavior of these materi-
als. Whereas recent work has shown that characteristic
fluctuations into a non-critical phase occur at Bipoint of

By

10+ Ll v gl L 111 reciprocal space for both calcite and N@l\{Q/nden-Be!I et
al. 1989; Dove et al. 1992; Hagen et al. 1992; Harris 1993;
103 - T ——r T — Ferrario et al. 1994; Harris et al. 1998a, 1998b), they clearly

have no significant effect on the observed critical exponents,
which instead correspond simply to the universality classes
(two-dimensional XY and three-dimensional Ising/XY) derived
above. The crossover previously claimed to occur bet@een
0.25top = 0.22 in NaNQ@is not supported by the experimental

b evidence, but a clear crossover to three-dimensional behavior
(wheref = 0.34) does appear to occur in the superlattice inten-
sities close td.. No evidence of a similar crossover to three-
dimensional behavior has yet been observed in calcite, but this
is probably due to the experimental difficulties associated with

104 — - preserving calcite intact close Ta
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