Beryl stability in local hydrothermal and chemical environments in a mineralized granite

GREGOR MARKL AND JOHN C. SCHUMACHER

Institut für Mineralogie, Petrologie und Geochemie, Albert-Ludwigs-Universität, Albertstrasse 23b, D-79104 Freiburg i. Br., Germany

ABSTRACT

The temperature and chemistry of hydrothermal fluids control the breakdown and formation of beryl in rocks of appropriate bulk composition. In rocks of the Triberg granitic complex in the Schwarzwald, Germany, late-magmatic to hydrothermal greisen fluids interacted with beryl-bearing pegmatites and the leucogranitic host rocks over a range of temperatures, but the greisen overprint was not pervasive. As a result, it is possible to examine the effects of the greisen fluids on beryl stability and the host granitic rock over a range of temperatures. Replacement of primary (pegmatitic) beryl resulted in the formation of secondary beryllicium minerals. At high temperature (~550 °C), gem-quality aquamarine was precipitated in vugs with alteration halos of albite, muscovite, cassiterite, and fluorite. At lower temperatures (~250 °C), blue anhedral beryl replaced potassium feldspar in granite adjacent to fractures. At slightly lower temperatures (~220–230 °C), pegmatitic beryl was replaced by kaolinite ± bertrandite ± phenakite.

Calculated activity and phase diagrams suggest that precipitation of secondary beryl depends chiefly on variations in the ratio Na/K in the fluid. These same fluids were responsible for the albite and white mica formation in the surrounding granite. Further, the effective fluid-to-rock ratio determines the progress of the alteration reactions, which in turn determines the ability of the fluid to precipitate beryl. On the basis of fluid-inclusion measurements and the activity-diagram calculations, a pH of about 5 (at ~550 °C and 4% NaCl equivalent) was estimated for the fluids that caused the mineralization.

INTRODUCTION AND GEOLOGIC SETTING

The Triberg granite complex (Fig. 1) in the central Schwarzwald, southwestern Germany, is a composite Variscan batholith that is composed of granodiorite, monzogranite, leucogranite, and a transitional leucogranite, which is believed to represent a hybrid of the monzo- and the leucogranitic melts (Schleicher 1978, 1984, 1994; Schleicher and Fritsche 1978). Werchau et al. (1989) determined an intrusion age of 325 ± 5 Ma (U/Pb in monazite).

The leucogranite is the youngest of these granitic bodies and crosscuts the other units. The leucogranitic melt was water undersaturated and interpreted as the product of a low degree of partial melting of metamorphosed sedimentary rocks in the lower crust during the relaxation after the collisional stage of the Variscan orogeny (Schleicher 1994). The leucogranite consists of potassium feldspar, quartz, plagioclase (An_{22–25}), muscovite, biotite [Fe/(Fe + Mg) = 0.93–0.95], and pinite pseudomorphs after cordierite (Schleicher 1994). The SiO2 content ranges from 76 to 79%, the Al2O3 content from 12 to 13.7%, and the total volume of mafic minerals is <5%. Contents of REE, Zr, Ba, and Sr are low, and Th, Y, Ga, and Rb/Sr are high (Schleicher 1994), which is typical for leucogranites. Additionally, the leucogranite contains small pegmatitic lenses with tourmaline and, less commonly, beryl as well as cassiterite + fluorite + topaz greisen assemblages (Markl 1994; Markl and Schumacher 1996). However, the beryl and the greisen assemblages are concentrated in a small area of the leucogranite.

The greisen zone was described in more detail by Markl (1994) and Markl and Schumacher (1996), and only the main features are outlined below. The beryl- and cassiterite-bearing areas are nearly identical and restricted to a 4 × 8 km region that is centered around the village of Niederwasser (Fig. 2). In this area Markl and Schumacher (1996) showed that temperature and geochemical gradients in the fluids extended roughly radially outward from a center of greisen activity. Temperatures near the center of greisen activity were estimated to be about 550 °C at 1500 bar; at the margins of the greisen zone, fluid temperatures were about 250 °C at 1500 bar. The temperature decrease correlates with a decrease by a factor between 15 and 40 in aH20 of the fluids. The simplest model of these features is concentric gradients in temperature and composition of the greisen fluids. Accordingly, distance from the center of mineralization (Fig. 2) should give a rough estimate of the properties of the fluids. The formation of the primary beryl-bearing assemblages (pegmatites) was the earlier event, and the overprinting of it...
and partial remobilization of Be by the greisen fluids followed. On the basis of our observations the greisen emplacement was a short-lived single event.

Pegmatitic beryl occurrences, where Be\(^{2+}\) may be concentrated in late-magmatic, highly differentiated melts or fluids, are common worldwide and are major sources for gem-quality beryl (e.g., aquamarine). The breakdown of primary pegmatitic beryl by reaction with acid melt and the subsequent formation of chrysoberyl in pegmatic environments was discussed by Franz and Mortenani (1984). Late-magmatic and hydrothermal fluids play a major role in transporting Be\(^{2+}\) from the primary sources (e.g., pegmatites) to the locations where secondary beryllium minerals form (see Jahns and Burnham 1969). For example, Černý (1968) described more than 40 types of beryllium mineral associations that formed from the alteration of beryl. Burt (1975) discussed qualitatively the beryl breakdown in terms of \(\mu_{F,\text{O}2}\) and \(\mu_{P,\text{O}2}\). Mårtensson (1960) and Tennyson (1960) described mobilization of primary pegmatitic beryl and formation of secondary Be minerals from hydrothermal fluids from the Kolsva pegmatite in Sweden and from the Tittling pegmatites in Bavaria. Remobilization of Be in late-magmatic, hydrothermal, and metamorphic regimes appears to be a reasonably common phenomenon. Surprisingly, little information exists about transport mechanisms and the nature of Be\(^{2+}\) complexes. Černý (1968) mentioned fluoroberyllates as possibly important complexes in greisen and pegmatic environments, but he also considered the Be\(^{2+}\) ion as important at low pH. Mobilization and transport of Be\(^{2+}\), and especially formation of beryl in metamorphic environments, have been intensively studied in recent years, but very little work has been conducted on these same problems in the late-magmatic phase of granites. In this paper we describe the evolution of hydrothermal fluids and their effects on beryl stability within a cooling granite unit.

MINERALS AND MINERAL TEXTURES

Mineral textures in representative samples from the Triberg granite complex (Fig. 3) are described below and listed in Table 1. The sample localities are shown in Figure 2. These samples are typical examples of features seen throughout the study area. The beryllium minerals were identified by XRD analyses, and microprobe analyses were performed on feldspars and micas (see Markl and Schumacher 1996).

Sample THB 11 (locality shown in Fig. 2) shows grei-
Figure 3. Photomicrographs (left) and micrographs (right) of beryl-bearing assemblages discussed in the text. (A) Beryl replacing potassium feldspar; (B) beryl replacing potassium feldspar in intergrowth with magmatically rounded quartz grains; (C) beryl crystals in a vug (right side of photograph) rimmed by albite-altered leucogranite (left side).

Sen veins with reaction zones that reach up to 1 cm in leucogranitic host rock. The greisenization is most intense adjacent to the central fracture, and intensity decreases symmetrically outward. In the wall rock, plagioclase and potassium feldspar have been altered, although albite in the marginal sections has been altered less than potassium feldspar. In addition, the extent of silicification and development of cassiterite and large white mica aggregates that are characteristic of the greisens decrease away from the central fracture.

Formation of secondary beryl

In sample THB 10 (Figs. 2 and 3), macroscopically pale blue beryl aggregates are extensively intergrown
TABLE 1. Primary and alteration assemblages with beryllium minerals from the Triberg granite complex, Germany

<table>
<thead>
<tr>
<th>Primary assemblages</th>
<th>Secondary assemblages (probably one event, alteration temperatures decreasing from 1 to 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pegmatites</td>
<td>1</td>
</tr>
<tr>
<td>Beryl</td>
<td>X</td>
</tr>
<tr>
<td>Potassium feldspar</td>
<td>X</td>
</tr>
<tr>
<td>Quartz</td>
<td>O</td>
</tr>
<tr>
<td>Plagioclase</td>
<td>O</td>
</tr>
<tr>
<td>Muscovite</td>
<td>O</td>
</tr>
<tr>
<td>Fluorite</td>
<td>O</td>
</tr>
<tr>
<td>Cassiterite</td>
<td>O</td>
</tr>
<tr>
<td>Bertrandite</td>
<td>X</td>
</tr>
<tr>
<td>Kaolinite</td>
<td>X</td>
</tr>
</tbody>
</table>

Note: X = always present, O = sometimes present, C = corroded.
* Assemblages 3a and 3b occur in different parts of the same sample.

FIGURE 4. Explanation of secondary beryl formation. (A) Activity-activity diagram that shows replacement of potassium feldspar (KFSP) by albite (AB) and muscovite (MUSC) in the surrounding granite. (B) Activity-activity diagram that shows the attainment of beryl (BERY) saturation through the precipitation of albite. (C) Activity-activity diagram that shows muscovite forms at the end of the alteration process. (D) Schematic diagram of the beryl-bearing vugs and their alteration halo. The numbers enclosed in circles in A–C schematically show a possible correlation of the evolution of the fluid composition with the temporal and spatial evolution of the vug in D. AND = andalusite.

with the fine-grained leucogranite. In contrast to the pegmatitic beryl, these beryl grains are anhedral and about the same size (3–5 mm) as grains of the minerals of the host leucogranite. The beryl occurrence defines an ellipsoidal area of rock that extends a few centimeters. Although no visible fractures or veins are evident, the biotite in the beryl patch and in a zone that is several centimeters wide in the surrounding granite is strongly altered to chlorite and hematite. Hematite also commonly occurs in the beryl-bearing area, but it is not macroscopically visible in rock lacking beryl.

Figure 3 shows photomicrographs of the replacement textures of sample THB 10. The beryl is intergrown with and clearly replaces feldspar. The replacement by beryl appears to originate from fractures and grain boundaries inward. Figure 3b shows rounded quartz grains from the primary leucogranitic mineral assemblage completely surrounded by beryl and minor relics of potassium feldspar. These textures suggest the reaction of the magmatic potassium feldspar with a Be-bearing fluid. The quartz grains appear to retain their magmatic texture, and the albite plagioclase from the granite that is in mutual contact with potassium feldspar and beryl was unaffected by the replacement of the neighboring potassium feldspar (Figs. 3a and 3b).

In sample THB 8, beryl occurs as terminated crystals in a granitic vug. The grains are up to 4 cm in length and, in rare cases, are of gem quality (pale blue aquamarine). The vug is surrounded by a zone of approximately 10 cm in which the fine-grained leucogranite is replaced by an albite + cassiterite + fluorite + muscovite rock (Figs. 3c and 4d). The albite is fresh and shows the chess-board pattern that is typical of albite that has metamatically replaced potassium feldspar (e.g., Tröger 1967). The beryl crystals in the vug only rarely are intergrown with albite and appear to have nucleated and grown within the vug rather than through replacement of a preexisting phase. About 50 cm from this vug, a pegmatite contains partially corroded primary beryl crystals.

This sample appears to be very similar to beryl crystals described by Oppelt (1991).
Replacement of beryl

In sample THB 130, a pegmatite that is about 30 cm across and that originally contained potassium feldspar, tourmaline, quartz, and beryl was strongly altered by reaction with the greisen fluids. This resulted in the complete replacement of potassium feldspar by muscovite and nearly complete replacement of beryl by kaolinite with coeval precipitation of cassiterite. Another texturally similar occurrence contains berthierine in addition to kaolinite that has replaced beryl.

At sample locality THB 81, 200 m from locality THB 130, a pegmatic lens shows beryl that is completely enclosed in quartz and unaltered, but where it was in contact with potassium feldspar, it is completely replaced by phenakite and muscovite.

Other samples show partially corroded pegmatic beryl crystals in contact with fluorite and gem-quality aquamarine in vugs that are filled with iron hydroxide at the margin of a large pegmatite lens.

In summary, the typical occurrences are as follows: (1) greisen assemblages that are composed of muscovite and quartz ± cassiterite ± fluorite ± topaz; (2) fresh beryl that occurs in pegmatite lenses with potassium feldspar, quartz, and albite; (3) secondary beryl that has replaced potassium feldspar in leucogranite; (4) secondary beryl with albite, quartz, muscovite, and, less commonly, fluorite and cassiterite; and (5) pegmatite lenses that have interacted with greisen fluids and that show partial to complete destruction of beryl and formation of muscovite and quartz with or without kaolinite, fluorite, berthierine, phenakite, or cassiterite.

GEOCHEMISTRY

On the basis of the descriptions above, there are at least two late-magmatic to hydrothermal stages that are recorded by the Be mineralization. The earliest phase is the crystallization of the beryl-bearing pegmatites, which probably record temperatures of 600–650 °C, the approximate temperature of minimum melts in F- or B-bearing granitic systems (e.g., Burnham and Nekvasil 1986).

Crosscutting veins indicate that greisen formation was the next, but distinctly later, mineralization event. This second phase of hydrothermal activity occurred over a range of temperatures and in different chemical settings (bulk compositions). These hydrothermal events are probably related; it is nearly impossible to subdivide further the hydrothermal activity into distinct phases. The greisen fluids infiltrated along fractures and, in places, penetrated vug-rich granite. Normally, however, the greisen fluids affected only a few millimeters or centimeters of host rock adjacent to the central fracture. These fluids corroded the primary beryl crystals in places where the fractures intersected pegmatic lenses. It is noteworthy that the temperature of the fluids is relatively unimportant in this case. Dissolution of beryl occurred over a range of temperatures (250–550 °C; Markl and Schumacher 1996). Consequently, the interaction of fluids with beryl record-
Secondary beryl that replaced potassium feldspar (sample THB 10; Fig. 3) must have resulted from a fracture in the granite that acted as fluid conduit. However, at the reaction site no vug was present. Beryl directly replaced potassium feldspar. Interestingly, coexisting primary albitic plagioclase remains absolutely unaltered, which suggests that fluids were not only high in Be\(^{2+}\) but also high in Na\(^{+}\), as was also suggested by sample THB 8 (Fig. 4). Temperatures were probably in the 250–300 °C range (Markl and Schumacher 1996).

The replacement of the potassium feldspar by beryl requires the influx of a fluid that is enriched in Be. As in the other examples, a fluid need not have been present initially, but significant amounts of fluid had to be present at the time of reaction. Influx of a fluid such as fluid 1 (Fig. 5A) would be out of equilibrium with potassium feldspar, which would immediately form beryl. The fluid would move toward composition 2 (Fig. 4). Figure 5B shows that the proportions of fluid to potassium feldspar (wide gray line in Fig. 5B) at the start of the reaction would determine the proportions of the solid phases at the end of the reaction. At extremely high ratios of fluid to potassium feldspar, potassium feldspar would be completely consumed (i.e., fluid–to–potassium feldspar ratios that lie within the two-phase field fluid-beryl; Fig. 5B). At lower ratios of fluid to potassium feldspar (within the three-phase field beryl–potassium feldspar–fluid), the fluid would reach composition 2, and the reaction would cease, leaving the potassium feldspar partially replaced by beryl.

Low-temperature beryl alteration

At several localities, beryl was altered at low temperature. This resulted either in the coeval replacement of beryl by kaolinite ± minor bertrandite and of potassium feldspar by muscovite in the immediately enclosing granite, or in the reaction of beryl and potassium feldspar with fluid to form phenakite and quartz. On the basis of the observed kaolinite-bearing assemblages and the calculat-
ed phase relations (Hemley et al. 1980; see also Markl and Schumacher 1996), this stage of beryl alteration is estimated to have occurred at about 220 °C (Fig. 6). A model for this stage of beryl alteration postulates the influx of a Be^{2+}- and K^{+}-poor fluid (kaolinite-stability field; Fig. 6A). Beryl was not stable with this fluid and reacted to form kaolinite. No fluid had to be present initially; however, any new fluid could have mixed with, or replaced, a preexisting fluid that was stable with beryl. Nevertheless, the new fluid must have been abundant enough to have dominated the phase relations in rock with volumes up to 50 dm3.

This fluid, relatively low in Be$^{2+}$ and K$^+$, would have been out of equilibrium with both beryl and potassium feldspar. The presence of these chemical gradients (shown as wide gray lines in Figs. 6B and 6C) results in the incongruent dissolution of beryl and potassium feldspar. The extent of each reaction depends on the effective fluid-to-solid ratio up to the point the reaction ceased. At relatively high fluid-to-beryl ratios, beryl would be completely replaced by kaolinite and eventually bertrandite (fluid 4a; Figs. 6A and 6B). At effective fluid-to-beryl ratios less than those of fluid 4a (Figs. 6A and 6B), relic beryl + kaolinite ± bertrandite ± phenakite (dependent on the temperature of the replacement reaction and the extent of the evolution of the fluid) would be left.

Similarly, the fluid that caused the beryl alteration could be responsible for the replacement of the potassium feldspar by white mica (path 2 → 3b in Figs. 6A and 6C). Again, depending on the effective fluid-to-feldspar ratio (Fig. 6C), the potassium feldspar could be completely to partially replaced by muscovite (Figs. 6A and 6C). For even higher ratios of fluid to solid, muscovite could be replaced by kaolinite. These latter textures have not been demonstrated; all observations to date suggest that only
the white mica was generated by the breakdown of potassium feldspar. The formation of kaolinite is texturally related to the dissolution of the beryl. It is also important to note that, in contrast to high-temperature cases, the beryl and the potassium feldspar behave as two separate bulk compositions that are affected differently by similar fluids.

The presence of cassiterite in these low-temperature assemblages indicates that the fluids were related to the greisen-forming fluids and that the composition of this Be$^{2+}$- and K$^{+}$-poor fluid was externally controlled. At least locally, a Be$^{2+}$-rich fluid evolved that reached concentrations high enough to stabilize new Be phases (phenakite and bertrandite). The reactions probably ceased when the supply of fluid was exhausted.

DISCUSSION AND CONCLUSIONS

Na-K-Be variations in the fluid

In the activity diagrams in Figure 4, the final fluid compositions are reasonably well constrained by the assemblages and fluid-inclusion data. The starting fluid compositions are more problematic; however, because textures indicate that precipitation of additional phases closely follows albite formation, it can be inferred that the starting fluids lie reasonably near the relevant field boundaries of albite. Consequently, the assumed composition of the initial fluid (Fig. 4) is probably a reasonable approximation of the actual fluids involved in the alteration process.

As shown above, the replacement of potassium feldspar by albite is a common feature of the alteration. The net effect is to decrease the Na content while increasing the K content of the fluid. The importance of this chemical variation to beryl formation is shown in Figure 4; in that example, the change in Na and K contents drove the fluid into the beryl-stability field without major changes in the Be content of the fluid.

Using both the fluid-inclusion measurements (Markl and Schumacher 1996) and the calculated phase relations (Fig. 4), it is possible to estimate the actual pH of the fluids that caused the alteration. The 4% NaCl from the fluid inclusions corresponds to 0.68 m/L. The value of log(a_{Na}/a$_{Na}^*$) of 5.1 (point 1 in Fig. 4A) was chosen on the basis of the assumption that none of the fluid compositions was far removed from the various stable assemblages. If these data are combined, the pH is estimated to be about 5.3.

Estimates of the changes in relative concentrations of K, Na, and Be in the fluid as the reactions proceed can also be obtained from Figure 4. For this reaction sequence, the ratios of Na/K and Be/K should both decrease more than one order of magnitude (Na/K from about 80 to 3, Be/K from about 1.3 x 10$^{-8}$ x a$_{aNa}^*$ to 6.3 x 10$^{-10}$ x a$_{aNa}^*$), whereas Be/Na increases very slightly (from about 1.6 x 10$^{-10}$ x a$_{aNa}^*$ to 2 x 10$^{-10}$ x a$_{aNa}^*$, all values estimated from Fig. 4). This increase in Be/Na seems surprising because of the formation of beryl, but it results from the extensive simultaneous formation of albite.

Estimations of the absolute element ratios are more difficult, but, if the values and the calculated stability fields in Figure 4 are used, then Na/K should change from about 80 to 3, which agrees well with the fluid-inclusion measurements. These show about 4% NaCl equivalent with minor CaCl, but no KCl. Interestingly, Be/Na and Be/K ratios are very low, although beryl precipitates.

Origin of the fluids

On the basis of these observations, the fluids that are responsible for all the reactions are basically greisen fluids, which is indicated by the common occurrence of cassiterite and fluorite in the alteration zones. These greisen fluids interacted with a variety of local assemblages over a range of temperatures. The exact nature of the observed alteration depends on which combination of all these factors was operating at each locality. In some areas, there is evidence for both the enrichment and depletion of Be in the fluid. For example, where beryl replaces potassium feldspar (Fig. 5), a Be-enriched fluid is necessary. The source of the Be$^{2+}$-enriched fluids is problematic, but the presence of strongly altered pegmatite beryl in the vicinity of the secondary beryl indicates that dissolution of primary beryl is the source. Consequently, no additional Be$^{2+}$-enriched magmatic or hydrothermal fluid from an outside source is required. A sample with fluoride filling the cavities in partly dissolved pegmatitic beryl suggests that these fluids were the same fluids that formed the cassiterite-bearing greisen assemblages in this area [see Markl and Schumacher (1996) for detailed description]. And this in turn fits very well with the observation of fluorite and cassiterite in the samples of secondary beryl described above.

The fluids that are responsible for this alteration could have come from various sources. Here they are greisen-related fluids, but any reactive hydrothermal fluid could cause a similar style of alteration.

Gem-quality beryl: The role of the local environment

There are two types of occurrences of secondary beryl. Secondary gem-quality beryl is restricted to vugs, where fluids were able to collect. Where beryl formed, but no free space was available, replacement textures after potassium feldspar developed. Around the vugs, relatively wide (20 cm zones) alteration halos formed; in contrast, the fractures away from the vugs show only very narrow (1 cm) alteration halos. This suggests that, after the fluids were emplaced in the fractures and vugs, the amount of subsequent alteration depended on the amount of reactive fluid available and the duration of the interaction. The width of the interaction zones probably depended on the permeability of the adjacent rock. On the basis of the width of the alteration zones, the granite enclosing the vugs must have had higher permeability than is generally seen around the narrow linear fractures. These observations seem to suggest that most of the interactions that most strongly influenced the chemistry of the fluids occurred in the vicinity of the vugs. This is consistent with
the observation that most of the secondary minerals, including gem-quality beryl, grew in the vicinity of the vugs.

Model of Be redistribution

Textures suggest that replacement of various minerals occurred during the rapid influx of fluid that was out of chemical equilibrium with the local mineral assemblage. As summarized above (see also Markl and Schumacher 1996), these fluids display a range of compositions and were active over a range of temperatures. We envision a scenario in which fractures, possibly due to thermal contraction, were propagating. Over time and at various temperatures, hydrothermal fluids encountered these fractures and moved rapidly to new locations in the leucogranite. Locally, these fluids reacted extensively with the surroundings, and, depending on rock and fluid compositions, effective fluid-to-rock ratio, temperature, and pressure, the replacement textures that were outlined above were produced.

The above observations seem to indicate that the Be mineralization of this granite unit records numerous steps in the cooling history and accompanying chemical evolution of the late-magmatic to hydrothermal fluids. In the case investigated here, the fluids that caused the mineralization appear to have had a local source. However, many hydrothermal fluids could initiate a similar series of mineralizing reactions upon encountering Be-enriched granitic rocks.

ACKNOWLEDGMENTS

We are very grateful to F. Pfundstein (at Konstanz), H. Stempel (at Hornberg), and D. Schrenk (at Fischerbach) for supplying some of the important samples that were used in this study. We also thank K. Fesenmeier, who prepared the thin sections, and H. Schlegel, who performed XRD analyses on several samples. We thank D. Burt and M. Barton for extremely helpful and constructive reviews.

REFERENCES CITED

