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ABSTRACT

A lattice-dynamical treatment of displacive phase transitions leads naturally to the soft-
mode model, in which the phase-transition mechanism involves a phonon frequency that
falls to zero at the transition temperature. The basic ideas of this approach are reviewed
in relation to displacive phase transitions in silicates. A simple free-energy model is used
to demonstrate that Landau theory gives a good approximation to the free energy of the
transition, provided that the entropy is primarily produced by the phonons rather than any
configurational disorder. The ‘‘rigid unit mode’’ model provides a physical link between
the theory and the chemical bonds in silicates and this allows us to understand the origin
of the transition temperature and also validates the application of the soft-mode model.
The model is also used to reappraise the nature of the structures of high-temperature
phases. Several issues that remain open, such as the origin of first-order phase transitions
and the thermodynamics of pressure-induced phase transitions, are discussed.

INTRODUCTION

The study of phase transitions extends back a century
to the early work on quartz, ferromagnets, and liquid-gas
phase equilibrium. Given the importance of quartz to
mineralogy, one can say that the history of the study of
phase transitions in minerals is as old as the very subject
of phase transitions itself (Dolino 1990). Yet despite this
historical link, much of the progress in our understanding
of phase transitions developed in the fields of solid-state
physics and solid-state chemistry has not, until recently,
had a great impact in mineralogy and mineral physics,
even though the catalog of minerals is riddled with phase
transitions. The different types of phase transitions found
in minerals are similar in many respects to the phase tran-
sitions observed in ionic, metallic, and molecular crystals,
and they include displacive phase transitions, cation or-
dering transitions (for example, Al-Si and Na-K), and or-
ientational order-disorder phase transitions. Several ex-
amples of the different types of phase transitions
observed in minerals are given in Appendix 1, some of
which are illustrated in Figure 1.

This review article is primarily concerned with displa-
cive phase transitions, which involve only small motions
of atoms to change the symmetry of a crystal structure.
My aim is to present, in a simplified manner, some of the
theoretical ideas that underpin the recent applications of
solid-state physics to the study of displacive phase tran-
sitions in minerals. Examples are the phase transitions
observed in quartz, cristobalite, and leucite, which are

represented in Figure 1. In each case, the phase transitions
involve small translations and rotations of the (Si,Al)O4

tetrahedra. One of the most popular of the new devel-
opments in the theory of displacive phase transitions in
minerals is the use of Landau theory to describe the ther-
modynamics of phase transitions (Putnis 1992; Salje
1990a, 1991a, 1991b, 1992a). This theory gives a phe-
nomenological framework to describe the temperature de-
pendence of a range of thermodynamic and physical
quantities, and provides a link between different experi-
mental measurements. It also explains the physical back-
ground behind Landau theory. In the case of displacive
phase transitions, the idea of the soft mode, namely a
phonon mode with a frequency that falls to zero at the
phase transition, is of some importance, and I will show
how this comes about and how it is linked in with Landau
theory. Tied in with the use of new theoretical methods
are new experimental approaches, including vibrational
spectroscopy (Iqbal and Owens 1984; Salje 1992b) and
neutron scattering (Axe 1971; Dorner 1982; Skold and
Price 1986; Ghose 1988), and I hope that one positive
aspect of this article is to promote wider use of these
techniques. I also hope that another message of this ar-
ticle is that the flow of ideas between solid-state physics
and mineralogy need not be seen as one-way only, we
have in the family of silicates a class of materials that
can provide new insights into phase-transition phenomena
that will surely have more general applications in the
fields of solid-state physics and chemistry.

The study of phase transitions is full of technical points
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FIGURE 1. Examples of displacive phase transitions in min-
erals. In each case a is the low-temperature phase and b is the
high-temperature phase. In these examples the displacive phase
transitions occur as a result of rotations and translations of the
nearly rigid tetrahedra.

FIGURE 2. Examples of phase transitions in perovskites,
showing the displacive phase transitions involving displacements
of cations or rotations of octahedra. The figure for BaTiO3 shows
the eight sites for the Ti41 cations in the cubic phase.

that, when not understood or properly defined, lead to
ambiguities based on semantics. This problem is illus-
trated by the displacive phase transitions in the perovskite
family (Fig. 2) (Bruce and Cowley 1981; Blinc and Zeks
1974; Lines and Glass 1977). One type of displacive
phase transition involves rotations of TiO6 octahedra
about the [001] axis, as in SrTiO3. The actual atomic dis-
placements are small, and it appears that one unit cell
behaves in more-or-less the same way as every other.
Similar examples are CaTiO3 and MgSiO3, where the oc-
tahedra tilt by different amounts about all three axes. An-
other type of displacive phase transition is seen in PbTiO3

(Shirane et al. 1970; Burns and Scott 1970), in which the
Pb21 and Ti41 cations move off-center along [001] to gen-
erate a ferroelectric phase transition (a phase transition
where the small changes in the atomic positions give rise

to the formation of a macroscopic dielectric polarization).
SrTiO3 also appears to be trying to undergo the same sort
of phase transition at a low temperature (Cowley 1962),
but quantum effects, which we discuss later, suppress the
transition. These examples are clear enough, but the wa-
ters are muddied by the ferroelectric phase transition in
BaTiO3 (Yamada et al. 1969; Harada et al. 1971). This
example appears at first sight to be very similar to Pb-
TiO3, but in this case it seems that the Ti41 atoms appear
to occupy a central site in the high temperature cubic
phase only on average, whereas in practice that site is
always a potential-energy maximum. The potential-ener-
gy minima for the Ti41 cations are located away from the
central site along the eight ^111& directions, so that in the
high-temperature phase the Ti41 cations are hopping
among the eight different sites. The ferroelectric phase
transition occurs when the Ti41 cations begin to lie pref-
erentially in the sites in the positive c direction. There
are still four of these, so there are subsequent phase tran-
sitions on further cooling until the Ti41 cations all occupy
the same one site in the unit cell. Ferroelectric phase tran-
sitions that involve the ordering of a proton between the
two sites on a double-well hydrogen bond, such as in
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KH2PO4, are a further extreme example of this (Bruce and
Cowley 1981; Blinc and Zeks 1974; Lines and Glass
1977). Some people like to think of all these transitions
as displacive, because they all involve small atomic dis-
placements, whereas others consider the one case to be
truly displacive and the other to be order-disorder. In this
review, I use this latter choice of terms, at least for the
extreme cases. The distinction is not based on the actual
atomic displacements but on thermodynamic criteria. In
the displacive case very little of the entropy will be con-
figurational, whereas in the order-disorder case the entro-
py is mostly configurational in origin. In practice there
may not always be a sharp distinction between the two
cases; this is seen by considering a simple model below.

The open questions
The first stage in the investigation of a phase transition

is to characterize it experimentally, to determine the tran-
sition temperature, to measure directly or indirectly the
changes in the structure on cooling below the transition
temperature, and perhaps to obtain some thermodynamic
data. With a reasonable set of data it may be possible to
draw a range of data together within the framework of
Landau theory, as described below. Landau theory has
proven to be an extremely powerful tool, for with a hand-
ful of empirical parameters it may be possible to describe
a full set of diverse experimental data for physical and
thermodynamic properties over a wide range of temper-
atures (Putnis 1992; Salje 1990a, 1991a, 1991b, 1992a).
The framework of Landau theory may also allow the re-
lationship between different phase transitions in the same
material to be understood, such as when there is an Al-Si
ordering phase transition and a displacive phase
transition.

The second stage in the investigation of a phase tran-
sition is to go beyond trying to understand what is hap-
pening to then try to understand why the phase transition
occurs, together with a host of other questions that are
summarized below. The power of Landau theory is that
some questions can be answered by symmetry arguments.
For example, the c axis in calcite (Dove and Powell 1989)
expands on heating up to the phase-transition temperature
in a way that is determined by the relationship between
the symmetry of the expansion of the lattice and the sym-
metry of the ordering process because of the phase tran-
sition. How much it expands may be a function of things
like the ionic radius and the amplitude of thermal vibra-
tions, which in turn reflect the atomic masses. Well, there
are some questions for which the answer may be ‘‘it just
is so’’, but equally there are other questions whose an-
swers lead into deeper physical insights. These are the
subject of this review.

Why can phase transitions occur?
It is intriguing to ask why phase transitions should be

so common in minerals. If we take the case of framework
aluminosilicate minerals, the Si-O and Al-O bonds are
strong and the framework structure is reasonably rigid by

reason of the connectivity of the strong bonds. In this
case the question concerns why there might be easy
modes of deformation to allow the phase transition to
occur. And even if an easy mode of deformation exists,
why would the structure want to distort? Another exam-
ple is Al-Si ordering phase transitions. Given that the en-
ergy required to form Al-O-Al linkages is quite large (of
the order of 40 kJ/mol or more; Putnis 1992; Phillips and
Kirkpatrick 1995; Dove et al. 1995a), it might be ex-
pected that these cations only disorder in equilibrium at
temperatures well above the melting points. Yet we find
that there is a wide range of ordering temperatures, ap-
parently even to fairly low temperatures. There must be
something in these systems that allows for easy disorder-
ing and thus allows the phase transition to occur.

What drives the phase transition?
The second question addresses the fact that even if,

say, there is an easy mode of deformation to allow a
displacive phase transition, there still needs to be some
driving force for the phase transition actually to occur.
There are two aspects to the driving force. First there
must be forces that will locally distort the structure. We
saw an example of this in the discussion of the Ti41 cation
hopping between sites of local potential energy minima
in BaTiO3, where it is the existence of these potential
energy minima that give rise to the local distortions of
the structure at low temperatures. The second part of the
driving force is some interaction that gives a coupling
between local ordering processes. There can only be an
ordering transition in BaTiO3, say, if the Ti41 cations in
neighboring unit cells interact with each other and force
each other to order in the same way.

This issue of the coupling between ordering atoms is
pertinent for many aluminosilicates where there are cat-
ions, such as K1 and Ca21, in large cavities formed by
the framework of linked SiO4 and AlO4 tetrahedra. In
these cases, phase transitions often involve both displace-
ments of the cations from the centers of the cavities and
collapse of the framework. Thus we can ask what is the
driving mechanism, whether it is ordering of the cations
or collapse of the framework? It is tempting to think that
the cations rattling around in their cavities will like to
order. However, the key point is not that there is a local
driving force to order single cations, but that there must
be some mechanism to couple the ordering of neighbor-
ing cations.

What determines the transition temperature?
Linked to the first and second questions is the issue of

what actually determines the value of the transition tem-
perature. Given that there is an easy way for a phase
transition to occur at an observable temperature, and that
there is a driving force to make the transition occur at a
finite temperature, we can, in principle, tackle the issue
of the factors that give the final value of the transition
temperature. At a later point in this review, I will derive
an equation for the transition temperature of a displacive
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phase transition, which involves a large summation over
all wave vectors in reciprocal space. Although this equa-
tion will link the transition temperature to microscopic
quantities, which in one sense will meet some of the aims
of this review, we will look beyond this equation to see
whether there are any fundamental interactions that will
be the main factors in determining the transition
temperature.

Why does one phase transition occur in preference to
another potential phase transition?

Stokes and Hatch (1989) have used group theoretical
methods to determine, for each space group, all the phase
transitions that can be obtained by an instability with a
wave vector at a symmetry point in the Brillouin zone.
For the cubic phase of the mineral leucite, with space
group Ia3d, there are 133 possible phase transitions listed
(Stokes and Hatch 1988). Yet leucite samples with similar
chemical composition, e.g., RAlSi2O6 with R 5 K, Rb,
or Cs, undergo the same type of displacive phase transi-
tion (Palmer et al. 1997). This suggests that there may be
some fundamental reason why the other 132 possibilities
do not occur.

Why does Landau theory appear to work well for
displacive phase transitions?

We have already remarked that Landau theory has been
used successfully to describe many displacive phase tran-
sitions in minerals. In essence Landau theory is simply a
Taylor expansion of the free energy in terms of a param-
eter that describes the change in the structure as a result
of the phase transition (called the order parameter, as de-
fined below), with the symmetry properties of the phase
transition properly taken into account. As a result one
could argue it probably should work reasonably well, at
least close to the transition temperature when the distor-
tions generated by the phase transition are small. How-
ever, it is found that Landau theory works well over a
wide range of temperatures for displacive phase transi-
tions (Salje 1986, 1987, 1990a, 1991a, 1991b, 1992a),
although this is not so for order-disorder phase transitions
such as ferromagnetic phase transitions. The question
could perhaps then be rephrased as to why the Taylor
expansion is valid over a wide range of temperatures. A
related issue concerns the conditions under which the
Taylor expansion might not be expected to be valid.

Why does the mean-field approximation work close to
the transition temperature?

Landau theory is a member of a class of theories that
invoke the mean-field approximation (Bruce and Cowley
1981; Bruce and Wallace 1989; Chaikin and Lubensky
1995; Yeomans 1992). This approximation will be ex-
plained in more detail below, for the work reviewed here
makes heavy use of it. Thermodynamic and physical
properties at temperatures close to the transition temper-
ature tend to follow the general form, zT 2 Tczl where T
is the temperature, Tc is the transition temperature, and

the value of the exponent l depends on the specific phys-
ical property or thermodynamic function (Bruce and
Cowley 1981; Bruce and Wallace 1989; Chaikin and Lu-
bensky 1995; Yeomans 1992). All mean-field type theo-
ries predict the same set of values for the different ex-
ponents. For example, the mean-field theory of
ferromagnetism predicts that the magnetization will vary
as z Tc 2 T z½ and the magnetic susceptibility will vary as
zT 2 Tcz21, regardless of the specific details of the mag-
netic ordering. Landau theory predicts identical behavior.
Indeed, we will find that similar relationships with the
same exponents arise in the theory of displacive phase
transitions, for these values for the exponents are deter-
mined by the use of the mean-field approximation rather
than by the details of the phase transition. For magnetic
phase transitions, though, it is found experimentally that
mean-field theories are not at all accurate for tempera-
tures close to the transition temperature (Bruce and Wal-
lace 1989). The failure of mean-field theory is most easily
recognized by the fact that the exponents have values that
are very different from those predicted by mean-field the-
ory. For example, at temperatures close to the transition
temperature the magnetization is found to vary as zTc 2
T zb with b ø 0.38, and the susceptibility as zT 2 Tczg with
g ø 1.3. The reason for the breakdown of the mean-field
approximation in these cases is well understood and will
be examined later in this review. However, it is frequently
(although not always) found that any breakdown of the
mean-field approximation in displacive phase transitions
occurs at temperatures too close to the transition temper-
ature to be experimentally observed. Why mean-field the-
ories should work so well at temperatures close to the
transition temperatures for displacive phase transitions is
another question I attempt to tackle in this review.

What determines whether a phase transition is
first-order or second-order?

Within the framework of Landau theory mechanisms
exist to describe a phase transition as first-order (with a
discontinuous change in the structure and entropy, and
hence a latent heat at the transition temperature) or sec-
ond-order (where the structure of the low-temperature
phase merges continuously with that of the high-temper-
ature phase at the phase transition, with no discontinuous
change in the entropy and hence with no latent heat). In
some cases symmetry allows for the existence of odd-
order terms in the Landau free energy that force the phase
transition to be first order. Empirically, for the majority
of cases where only even-order terms are allowed, the
order of a phase transition can be set by the sign of the
fourth-order term in the expansion of the free energy.
Sometimes the sign of the fourth-order term can be ra-
tionalized as a result of the size of the coupling between
the order parameter and strain (see below). However,
whether there may be some further fundamental factors
that determine whether a phase transition is first order or
second order is an issue that has been investigated by
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FIGURE 3. Representation of a simple model that undergoes
a phase transition in two and three dimensions. The atoms vibrate
in double-well potentials (drawn as curves), and interact with
their neighbors by harmonic forces, represented as springs. This
figure shows the one-dimensional form of the model, but it is
easily generalized to higher dimensions.

theory to some extent; I pick up the discussion on this
question toward the end of this review.

What is the nature of the high-temperature phase?
My final question concerns the issue of the structural

state of a material for temperatures above a displacive
phase transition. This is a problem that has aroused con-
siderable controversy from time to time. In some cases it
has been suggested that high-temperature phases consist
of small domains of the structure of the low-temperature
phase in all possible orientations, to give a structure that
is averaged over all domains and therefore has the ap-
pearance of a higher-symmetry structure. However, the
structure of the high-temperature phase could simply be
that given by diffraction experiments, or it could be dy-
namically disordered. Although the question about the na-
ture of the high-temperature phase can only be answered
by experiment or by molecular dynamics simulations, I
attempt to allow theory to cast some light on this issue.

SIMPLE MODEL AS A PARADIGM FOR

PHASE TRANSITION THEORY

A useful tool in the study of the theory of phase tran-
sitions is the model illustrated in Figure 3 (Bruce and
Cowley 1981; Giddy et al. 1989; Salje 1991b; Padlewski
et al. 1992; Radescu et al. 1995). The model contains an
array of atoms linked by harmonic forces, with one atom
in each unit cell. The model is drawn as a one-dimen-
sional array in Figure 3, but it is easily generalized to two
or three dimensions (later it will be shown that the one-
dimensional case does not actually have a phase transi-
tion). Each atom ‘‘sees’’ a local double-well potential,
which is assumed to represent the rest of the crystal that
is missing from the model. For example, this double-well
potential might represent the potential seen by the Ti41

cation in the perovskite titanates. The double-well poten-
tials provide the driving force for any phase transition.
At low temperatures the equilibrium structure has all at-
oms displaced to one side of their origin or the other. At
high temperatures there is a phase transition to a state
where each atom vibrates about its origin. Although this
model is clearly a gross simplification of what happens
in a real crystal, it is actually rather instructive in helping
to picture the physical interpretation of the theory and to
highlight the issues just raised. I will come back to it
several times, and use it as a reference point for compar-
ison. Specifically we will now use this model to clarify

the distinction between displacive and order-disorder
phase transitions along the lines I mentioned above when
comparing the similar perovskites PbTiO3 and BaTiO3,
which will be essential in developing a thermodynamic
theory of the phase transitions.

The simplest version of this model has a scalar (one-
dimensional) displacement of each atom, written as u.
The local double-well potential can be represented as

1 1
2 4V(u) 5 2 k u 1 k u (1)2 42 4

where the parameters k2 and k4 are positive constants. The
energy of each atom also includes the harmonic energy
because of its interaction with its neighbors, ½J(ui 2 uj)2,
where J is the harmonic force constant, and its kinetic
energy. The total energy of this system (usually called
the Hamiltonian H ) is written for the case of a simple
cubic arrangement of atoms as

1 1 1 1
2 2 4 2H 5 mu̇ 1 2 k u 1 k u 1 J(u 2 u )O O Oi 2 i 4 i i j1 22 2 4 2i i i±j

1 1 1
2 2 45 mu̇ 1 2 (k 2 6J)u 1 k u 2 Ju uO O Oi 2 i 4 i i j1 22 2 4i i i±j

(2)

where ui is the displacement of the ith atom and we con-
sider only the displacement along a single direction. The
sum over j is over nearest neighbors only. Each atom has
mass m. This model is commonly expressed in both forms
given. The first form is similar to most simple lattice dy-
namics models, whereas the second form is like models
for spin systems.

The model defined by Equation 2 has two important
quantities (Bruce and Cowley 1981). The first is the depth
of the potential well of Equation 1, V0. The minima of
V(u) occur at u 5 6u0, where u 5 k2 / k4, so that2

0

1
2V 5 2 k u (3)0 2 04

The second important quantity is the interaction energy
of a pair of atoms with relative displacements u0 and 2u0,
which characterizes the strength of the interaction be-
tween neighboring atoms:

W 5 2Ju2
0 (4)

It is instructive to consider the ratio s of these two
quantities:

z V z k0 2s 5 5 (5)
W 8J

This gives the relative strengths of the local double-
well potentials and the energy of interaction of an atom
with its neighbors (Bruce and Cowley 1981). The factor
of ⅛ is not too important, because we will see later that
this ratio can be recast as s ø zV0z/kBTc, and we will be
thinking about values of s that are large or small com-
pared to unity. Because it may be possible to calculate V0
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FIGURE 4. Four different configurations of a chain of spins:
(a) corresponds to the fully ordered state (h 5 1); (b) corresponds
to a randomly disordered configuration with h 5 0; (c) corre-
sponds to a state with h 5 0 generated from the ordered state by
addition of a domain wall in the middle of the chain; (d) cor-
responds to a h 5 0.5 state with generated from the h 5 0 state
of configuration c by movement of the domain wall.

FIGURE 5. Sequence showing the ordering of atoms for the
model of Figure 3 in the order-disorder limit. At high tempera-
tures (T k Tc, h 5 0) the positions of neighboring atoms are not
correlated in any significant way. On cooling toward the transi-
tion temperature (T . Tc, h 5 0) the effects of nearest-neighbor
interactions become more significant and a degree of short-range
order is established. Below the transition temperature (T , Tc,
zhz . 0) the probability is greater that one side of the double-
well potential (in this case the left-hand side) will be occupied,
but there is also a significant probability that some atoms will
occupy the alternative potential well. At very low temperatures
(T K Tc) most of the atoms occupy the same side of the double-
well potential.

from model interatomic interactions, it may be possible
to estimate s for any specific example.

Case 1: order-disorder limit
The case s k 1 corresponds to the order-disorder limit.

In this case the potential barrier between the two wells is
much higher than the interaction between neighboring at-
oms. Even at a temperature well above the transition tem-
perature, the atoms will reside in one or other of the two
wells, albeit with a random occupancy at first. The ex-
amples of BaTiO3 and KH2PO4 described earlier are pos-
sible examples of this model. Because in this limit the
displacements are all ui ø 6u0 for most temperatures, we
can represent the simple model by an array of spins, with
a spin pointing up for ui ø 1u0 and pointing down for, ui

ø 2u0, as illustrated in Figure 4. In this case the model
Hamiltonian can be represented by the form

1 ˜H 5 2 JS S (6)O i j2 i,j

where Si 5 ui/u0 ø 61 and J 5 2Ju [it is not necessary2
0

now to include the kinetic energy or the single-particle
energies because the dominant term is that given in Equa-
tion 6]. This is the famous spin-½ Ising model (Yeomans
1992; Chaikin and Lubensky 1995), which is probably
the best-studied model of a phase transition. The transi-
tion temperature for this model on a cubic lattice has been
calculated as

kBTc(s k 1) ø 4.15Ju 5 2.255W2
0 (7)

Note that kBTc is not a direct function of V0, and indeed
kBTc K zV0z. In the order-disorder limit the effect of the

local potential is simply to confine the atoms to one po-
tential well or another. For temperatures in the range, J
# kB T # V0, the particular potential well occupied by a
given atom is random with no regard to the potential
wells occupied by its neighboring atoms. However, on
cooling the effect of the interatomic interaction becomes
more important and neighboring atoms begin to prefer to
occupy the same side of the double-well potential, giving
some degree of short-range order. The spatial range of
this short-range order grows on cooling toward Tc, when
long-range order is established and the probability of any
atom occupying one of the potential wells is larger than
the probability of it occupying the other well. This or-
dering sequence is illustrated in Figure 5.

Case 2: displacive limit

The second case, s K 1, is the displacive limit. Here
the forces between atoms are much larger than the forces
due to the local potential. In this case we will later show
that the transition temperature in three dimensions is giv-
en as

kBTc(s K 1) ø 1.319Ju 5 0.6595W2
0 (8)

Again the actual height of the potential barrier has noth-
ing to do with the phase transition temperature per se.
Unlike in the order-disorder limit, at high temperatures
the local potential does not force atoms to sit on one side
of the origin or the other, because zV0z K kBTc. Instead the
atoms vibrate about the origin, and the shape of the dou-
ble-well potential has little effect other than to modify the
phonon frequencies. On cooling toward the phase tran-
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FIGURE 6. Sequence showing the ordering of atoms for the
model of Figure 3 in the displacive limit. At high temperatures
(T k Tc, h 5 0) the atoms vibrate about the zero position, and
the effects of the double-well potential are not significant. On
cooling toward the transition temperature (T . Tc, h 5 0 ) the
effects of double-well potential become more significant and a
degree of short-range order is established, where neighboring
groups of atoms are temporarily slightly displaced from the or-
igin. Below the transition temperature (T , Tc, zhz . 0) the atoms
vibrate about positions that are shifted away from the origin, and
all atoms vibrate about the sample displaced point. At very low
temperatures (T K Tc, h 5 h0) all the atoms occupy the same
side of the double-well potential.

sition, the effects of the shape of the double-well potential
become more important and atoms begin to spend rela-
tively more time on either side of the origin. However,
because the forces between neighboring atoms are much
stronger, neighboring atoms are displaced from the ori-
gins by similar amounts. Below the transition temperature
the mean positions of all the atoms are displaced by the
same small amount to one side of the origin, and the size
of this displacement increases on further cooling. This
ordering sequence is illustrated in Figure 6.

The model for the displacive limit has many features
that are found in a typical displacive phase transition. For
example, it has a soft mode of the form that is described
later (Padlewski et al. 1992). The free energy has been
calculated and found to follow the standard Landau form
(Radescu et al. 1995). The model has been studied for a
range of parameters using molecular dynamics simula-
tions, with the value of s ranging from the extreme dis-
placive limit toward the order-disorder limit (e.g., Pad-
lewski et al. 1992). These studies have provided
information on the nature of the high-temperature phases
(e.g., Bruce and Cowley 1981).

In passing note that from Equations 7 and 8 we can
approximate the ratio s in Equation 5 for either limit to
s ø zV0z/kBTc, as noted above.

Finally, it will be important to keep in mind the limi-
tations on the model. For example, there is only a single
branch of lattice vibrations (as opposed to 33 the number
of atoms in the unit cell), and these vibrations are optic
modes. Some phase transitions involve an instability of
some of the acoustic modes rather than the optic modes;
these transitions are called ferroelastic because they in-
volve the formation of a reversible spontaneous shear
strain on cooling below the transition temperature (Salje
1990a, 1990b, 1991a, 1991b). Moreover, the simple mod-
el does not include any coupling to strain, whereas many
phase transitions cause large changes in the lattice param-
eters. However, we will find that the model is closer to
the truth than might be imagined when considering these
limitations.

THERMODYNAMIC CONSIDERATIONS

The insights from thermodynamics are of vital impor-
tance in our understanding of phase transitions. Much of
what is discussed in this review will focus on the calcu-
lation of the free energy of a system. The relative free
energies of two different phases represent a fine balance
between the enthalpy and entropy of the two phases. In
the extreme order-disorder case, described for example by
Equation 6, the atoms are all displaced to the positions
of the minima of the double-well potentials, so that the
enthalpy differences between the ordered and disordered
phases come directly from the nearest-neighbor interac-
tions, and the entropy is purely configurational. On the
other hand, in the displacive case the enthalpy is a more
complicated function of direct and indirect interactions
between the ordering atoms and the rest of the crystal,
and it contains important contributions from changes in

the vibrational energy. The entropy now comes from the
vibrational contributions rather than from any configura-
tional terms, and changes in entropy through the phase
transition arise from the effect of the phase transition on
the vibrational spectra. As noted above, the source of the
entropy, whether configurational or vibrational, deter-
mines whether we think of a phase transition as primarily
order-disorder or displacive type.

It is interesting to note that how we interpret a phase
transition can depend on whether we think of the issues
being concerned with what happens on heating up
through the phase transition or cooling down below the
transition temperature. For example, when we ask why a
phase transition occurs, we could start by thinking about
the low-temperature phase and ask why there is a process
that can disorder the structure, or else we could start by
thinking about the high-temperature phase and ask why
there might be some displacive instability that occurs at
low temperatures. In many cases I will take the perspec-
tive of thinking about what happens on cooling from the
high-temperature phase. Thus I might ask why the poten-
tial V(u) has a double-well form rather than a single min-
imum at u 5 0. But sometimes it will be useful to think
from the other perspective. For example, given a double-
well form of the potential V(u), we could ask why there
should be a phase transition on heating at all. Or put
another way, why isn’t Tc ø `?

SCOPE OF THE PRESENT ARTICLE

The objective of this review is to outline the theory of
displacive phase transitions as it presently stands, mostly
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in terms of temperature rather than pressure (see near the
end for some comments on this distinction), and to relate
the general theory to specific mineralogical examples.
Within the field of solid-state physics the general theory
has provided a framework for the development of more
detailed theoretical models for specific cases, but rarely
was there any attempt to tie in numerical predictions with
experimental data. Instead the link between experiment
and theory has been limited to verification of the general
predictions. Historically, it is important to note, in the
field of solid-state physics both experiment and theory
quickly moved into investigations of the phenomena that
are found at temperatures extremely close to the transition
temperature, the so-called critical point phenomena
(Bruce and Cowley 1981; Bruce and Wallace 1989; Yeo-
mans 1992; Chaikin and Lubensky 1995), leaving some
of the above questions unanswered. The main exception
is that the link between the general theory and Landau
theory was recognized early on, and the conditions for
the application of mean-field theory have been appreci-
ated from work on the standard paradigm. Very little of
this earlier work has had any impact in mineralogical
studies of phase transitions, which in part has prompted
the writing of this review. The one part of the theory of
phase transitions that has been widely applied within min-
eralogy is the use of Landau theory. It is not my intention
to dwell on Landau theory per se, but it is important to
understand the physical basis of this approach, and so one
of my objectives is to obtain the main formalism of Lan-
dau theory from the general theory of displacive phase
transitions. To work within a common context, I give a
brief review of Landau theory in the next section. Be-
cause there are many other reviews of Landau theory
(Blinc and Zeks 1974; Lines and Glass 1977; Bruce and
Cowley 1981; Putnis 1992; Salje 1990a, 1991a, 1991b,
1992a) I will focus more on the issues that provide the
link with the theory to be developed rather than on the
details of the applications of Landau theory.

The general theory of displacive phase transitions is
developed in the third section. This is firmly based in the
theory of lattice dynamics. The theory answers some of
our questions in general terms, but in some respects the
theory only leaves us with a sharper question rather than
a final solution, not least because the numerical predic-
tions are not straightforward. We have made some prog-
ress on this front in the application of the general models
to framework silicates, which is the focus of the fourth
section. I believe that the insights that come from this
single class of materials will have wider applications. In
the fifth section I try to link the theoretical ideas with
specific experimental studies. Actually the number of rel-
evant experimental studies is small, which again provides
a motivation for this review. To close I will discuss the
issues that are still open to further investigation. Through-
out the review I will highlight answers to the central
questions.

Because of constraints on space I need to assume some
familiarity with the theory of lattice dynamics, including

anharmonic phonon theory, and the statistical mechanics
of phonons. I have discussed these topics in some detail
elsewhere at a level comparable to that of the present
article (Dove 1993), together with an introduction to neu-
tron scattering, vibrational spectroscopy, the different
types of phase transitions, and Landau theory. Because
the focus of this article is on the general theoretical ideas,
I cannot devote much space to the description of specific
examples. Many examples are given in Appendix 1, some
of which are reviewed in a single volume by Heaney
(1994), Hemley et al. (1994), Palmer (1994), and Dolino
and Vallade (1994).

LANDAU THEORY OF PHASE TRANSITIONS:
BASIC IDEAS, CRITIQUE, AND

QUESTIONS RAISED

The order parameter

The essential idea behind Landau theory, at least as
envisaged in its early development, is quite simple (Blinc
and Zeks 1974; Lines and Glass 1977; Bruce and Cowley
1981; Putnis 1992; Salje 1990a, 1991a, 1991b, 1992a;
Dove 1993, Appendix D). A phase transition can be char-
acterized by a parameter, called the order parameter,
which contains all the information about the degree of
order or extent of deformation in the low-temperature
phase. The spirit of Landau theory is that the free energy
can be expressed as a low-order Taylor expansion in
terms of the order parameter, together with terms that
couple the order parameter with other physical quantities
(such as strain). The expansion is truncated at the lowest
order that is theoretically possible. The behavior of the
order parameter and coupled quantities can then be ob-
tained from the free energy using standard thermodynam-
ic relations. It is in this sense that Landau theory has
proven to be so powerful: With the minimum of effort a
wide range of fundamental relationships can be derived,
with coefficients that are usually obtained by fitting ex-
perimental data. In the present article the order parameter
is given the symbol h; in other cases it is given the sym-
bol Q, but we follow the convention of lattice dynamics
and use that symbol for the phonon normal mode
coordinate.

The simplest example of a practical definition of an
order parameter is for a ferromagnetic phase transition.
From a macroscopic perspective we can define the order
parameter as the sample magnetization, whereas from a
microscopic perspective we can construct an identical def-
inition as

1
h 5 S (9)O jN j

where Sj is the value of the spin on the j-th site. In the
spin-½ Ising representation, Sj 5 6S (i.e., the atomic mo-
ment is assumed to point only up or down), whereas in
a more general case both Sj and h are vector quantities.

In the case of a displacive phase transition, the specific
definition of the order parameter is a little more ambig-
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FIGURE 7. Plot of Landau free energy for temperatures above
and below the transition temperature. The equilibrium value of
the order parameter h is given by the minimum of the free en-
ergy. At high temperatures (T . Tc) there is a single minimum
at h 5 0. At low temperatures (T K Tc) the free energy has a
maximum at h 5 0 and minima at non-zero values of h 5 6h0.

uous because of the complicating factors of thermal ex-
pansion and the spontaneous strains that frequently ac-
company displacive phase transitions. Actually the order
parameter for the model of Equation 2 does not suffer
from these problems, and the order parameter can be de-
fined as the mean displacement:

1
h 5 u (10)O jN j

A simple definition for a real material can be constructed
by comparing the fractional coordinates of the atoms in
the low-temperature and high-temperature phases. For ex-
ample, in cristobalite (Schmahl et al. 1992) one of the Si
atoms has fractional coordinates (x, x, 0) in the low-tem-
perature phase, which tend toward (¼, ¼, 0) on heating
to the high-temperature phase. Thus the order parameter
could be defined as

1
h 5 2 x (11)

4

By using fractional coordinates rather than absolute dis-
placements we may circumvent the problems associated
with thermal expansion. On the other hand, when a tran-
sition involves rotations of a group of atoms, such as the
TiO6 octahedra in SrTiO3 or CaTiO3, or SiO4 tetrahedra
in quartz and several other silicates, the order parameter
could be equally well defined as the angle 6f that the
group of atoms has rotated to break the symmetry (the
different signs reflect the fact that neighboring polyhedra
must rotate in an opposite sense to maintain a common
vertex):

h 5 ^6f& (12)

Because the atomic displacements due to a displacive
phase transition are small, all definitions of these types
are practically equivalent, and the degree of ambiguity is
largely irrelevant. However, some of the displacements
and rotations actually follow the order parameter to high-
er order. For example, models of cristobalite based upon
the rotations and translations of rigid SiO4 tetrahedra
show that the changes in one of the fractional coordinates
vary quadratically with all the other changes (unpublished
analysis). Thus in practice it is essential that one does not
simply average over all changes in the atomic positions,
but rather one selects only those that have a linear rela-
tionship with each other. This set can be selected by cal-
culating the changes in structure assuming perfectly rigid
SiO4 tetrahedra.

The Landau free energy
Having defined an appropriate order parameter, we then

assume that the free energy of the low-temperature phase
can be written as a power series in the order parameter h:

1 1
2 4G(h) 5 G 1 Ah 1 Bh 1 · · · (13)0 2 4

where the parameters A and B are constants, and G0 is

the free energy of the system for h 5 0 (Dove 1993,
Appendix D). Usually G(h) is independent of the sign of
h and therefore only contains terms with even powers of
h. There are some cases, however, when G(h) ± G(2h),
and then terms with odd powers of h must be included
in Equation 13, but we will not consider these here (Dove
1993, Appendix D). Equation 13 represents an expansion
of the free energy about a maximum value in the low-
temperature phase and is therefore expected to be valid
only for small values of h, i.e., only close to the phase
transition. The free energy of Equation 13 is shown in
Figure 7 for two cases, one where A . 0, leading to a
single minimum at h 5 0, and a second where A , 0,
leading to a maximum at h 5 0 and minima at non-zero
values of h.

For the free energy of Equation 13 to represent a phase
transition, it is necessary that the value of A change sign
at the transition temperature, so that it is positive for tem-
peratures above the transition temperature Tc and negative
below. The simplest implementation of this condition is
to assume that A 5 a(T 2 Tc). It is also assumed that we
only need to consider the smallest number of terms in the
expansion, so that we can rewrite Equation 13 as

1 1
2 4G(h) 5 G 1 a(T 2 T )h 1 bh (14)0 c2 4

where a and b (5 B) are positive constants. The equilib-
rium condition ]G / ]h 5 0 applied to Equation 14 leads
to the predictions that h 5 0 for T . Tc, that there is a
continuous (second-order) phase transition at T 5 Tc, and
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that at lower temperatures h is non-zero and has the tem-
perature dependence:

1/2
a(T 2 T)ch 5 (15)[ ]b

When the constant b is negative the form of the free en-
ergy gives a discontinuous (first-order) phase transition,
and the expansion of the free energy must be taken to
higher order (Dove 1993, Appendix D).

Equation 14 can be extended to include more compli-
cated details of symmetry or to account for different vec-
tor components of the order parameter. One common ex-
tension, keeping within the spirit of expressing the free
energy as a simple series expansion and retaining only
the lowest-order terms necessary, is to include one or
more strain variables, e:

1 1
2 4G(h) 5 G 1 a(T 2 T )h 1 bh0 c2 4

1 1
n 21 zeh 1 Ce (16)

2 2

where z and C are constants (C is a normal elastic con-
stant), and n equals 1 or 2 depending on whether the
strain has the same or different symmetry to the order
parameter. The strain is not an independent quantity when
we consider the equilibrium state:

n]G 1 zh
5 0 ⇒ e 5

]e 2 C

2 2n1 1 1 z h
2 4⇒ G(h) 5 G 1 a(T 2 T )h 1 bh 20 c2 4 4 C

(17)

Hence depending on the value of n, the coupling to strain
will either effectively increase the value of Tc (n 5 1) or
reduce the value of the quartic coefficient (n 5 2). If the
effect on the quartic term is so large as to make it neg-
ative overall, the phase transition will become first order.

It is common to separate the part of the free energy
that contains all the information about h; this is called
the Landau free energy GL:

GL(h) 5 G(h) 2 G0 (18)

The function GL can be obtained as an approximation to
any theoretical free energy. In this review we will derive
GL for a displacive phase transition in terms of micro-
scopic parameters and thereby provide a link between the
macroscopic thermodynamic approach and the interatom-
ic forces.

CRITIQUE OF LANDAU THEORY

Landau theory has been widely applied in the solid-
state sciences for two main (but not wholly independent)
reasons. The first is that for many cases it provides a good
empirical description of the observed behavior (Salje
1986, 1987, 1990a, 1991a, 1991b, 1992a). From mea-
surements of the temperature dependence of the order pa-

rameter together with thermodynamic data it is quite easy
to obtain estimates for the coefficients of the Landau free
energy. This approach can lead to a useful rationalization
of a number of separate observations. The second reason
is that the Landau free energy provides a model free en-
ergy that can be developed into a detailed theory. Even
when the numerical predictions are not accurate, many of
its qualitative predictions are surprisingly useful, because
they are based on rigorous principles of symmetry. The
use of group theory can give powerful constraints on the
formulation of the Landau free energy, leading to some
useful predictions concerning many physical properties.
At its heart, Landau theory is useful precisely because
the free energy is expressed as a Taylor expansion; the
central issue then revolves around the extent to which the
Taylor expansion can be considered to be valid.

The prediction of the temperature dependence of h,
Equation 15, with the exponent of ½, is typical of the
predictions of mean-field theories (Bruce and Cowley
1981; Bruce and Wallace 1989; Yeomans 1992; Chaikin
and Lubensky 1995), which assume that the individual
atoms or magnetic spins that order at the phase transition
interact with the average state of all the others. Thus GL

does not contain information about any individual atom,
but only about h, which gives an average over all atoms.

We can illustrate this point by considering a simple
one-dimensional array of spins, as shown in Figure 4. The
order parameter for this example is given by Equation 9.
The state h 5 1 (fully ordered) at T 5 0 K is shown in
Figure 4a. Two states with h 5 0 are shown in Figures
4b and 4c. If the spin interactions can be represented by
the model Hamiltonian given by Equation 6 with nearest
neighbor interactions only, clearly the two configurations
with h 5 0 do not have equivalent energy. In Figure 4d
we show another state with h 5 ½. This state has exactly
the same energy as that for h 5 0 shown in Figure 4c.
There is, therefore, a range of states with h ± 61 that
have an equivalent energy. In fact this model has an or-
dered state only at T 5 0 K: there is no phase transition
at a non-zero temperature.

We can quantify this point by considering the ther-
modynamic properties of a chain of N spins. If there are
n domain walls, each of energy J relative to the energy
with complete order, the enthalpy is simply given as nJ
and the entropy can be formed by the standard configu-
rational entropy associated with distributing n domain
walls on N possible bonds. Minimization of the resultant
free energy in the limit n K N gives

n 5 N exp (2J/kBT) (19)

Thus the equilibrium number of domain walls tends to
zero only as the temperature goes to zero. The existence
of just one domain wall is sufficient to destroy long-range
order completely, so long-range order can only occur at
T 5 0 K. Furthermore, it has been shown that no one-
dimensional system can undergo a phase transition at a
non-zero temperature, and there are a number of model
systems that cannot order even in two dimensions (Bruce
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and Wallace 1989; Thouless 1989; Yeomans 1992; Chai-
kin and Lubensky 1995). Thus Landau theory fails spec-
tacularly in such cases, since it does not contain any in-
formation about dimensionality. One might think that
dimensionality is not an issue in mineralogy, but that is
not necessarily the case. If ordering forces are sufficiently
anisotropic, for example in a chain or layer silicate, the
ordering process might be effectively one dimensional at
higher temperatures. This is realized for Al-Si ordering
in sillimanite, gehlenite, and cordierite (Thayaparam et al.
1994, 1996; Dove et al. 1996a). In these cases, Al-Si
ordering is strongest for tetrahedral sites in chains along
specific directions. Complete three-dimensional ordering
is only made possible by weaker interactions between the
chains of tetrahedra.

It might be argued that the failure of the Landau free
energy outlined above is partly because GL is only sup-
posed to work for temperatures close to Tc. However, it
is sometimes found experimentally that the temperature
dependence of h given by Equation 15 holds for a range
of temperatures below Tc, but at temperatures very close
to Tc it is no longer described by Equation 15, but by the
general form:

h 5 A(Tc 2 T)b (20)

with b , ½, typically of the order (but not exactly equal
to) ⅓ for three-dimensional systems. The range of tem-
peratures over which the order parameter is described by
Equation 20, rather than by Equation 15, is called the
Ginzburg interval or critical region (Bruce and Cowley
1981). The existence of the Ginzburg interval is due to
spatial fluctuations of the order parameter similar to those
shown in Figure 4. The Ginzburg interval is large in spin
systems and systems with short-range interactions, but it
is found that there are many phase transitions, including
phase transitions in minerals, where the Ginzburg interval
is so close to zero in size that it cannot be observed.

Even when Landau theory appears to be in reasonable
agreement with experiment for most temperatures, Equa-
tion 15 cannot work at low temperatures because the third
law of thermodynamics requires that ]h/]T 5 0 at T 5 0
K. Thus GL is not a correct thermodynamic function, but
is an approximation to one at high temperatures. For GL

to be a correct thermodynamic function it must obey the
condition that ]GL/]T 5 2]G0/]T at T 5 0 K so that ]G/
]T 5 0. For this to be true, then the function G0 must
contain information about h, which contradicts our initial
assumption, or else both differentials should tend to zero
at T 5 0 K, which is not the case in the standard Landau
formalism.

Despite the fact that I have raised several criticisms of
Landau theory, it is often found that displacive phase
transitions in many minerals can be described reasonably
well by Landau theory. Indeed, it is often found that the
order parameter can be described by Equation 15 for tem-
peratures down to 100–200 K, when the effects of the
third law of thermodynamics become important.

LATTICE DYNAMICAL THEORY OF

DISPLACIVE PHASE TRANSITIONS

Soft-mode theory of displacive phase transitions

Since the classic papers by Cochran (1959, 1960, 1981)
on the origin of ferroelectricity, displacive phase transi-
tions have been understood in terms of the soft-mode the-
ory (Blinc and Zeks 1974; Scott 1974; Lines and Glass
1977; Bruce and Cowley 1981; Ghose 1985; Dove 1993,
Chapter 8). Historically the theory was partly driven by
developments in the understanding of lattice dynamics
that followed from the development of inelastic neutron
scattering techniques (Axe 1971; Shirane 1974; Dorner
1982; Skold and Price 1986; Ghose 1988). The central
idea is that in the high-temperature phase there is a lattice
vibration for which the frequency falls to zero on cooling
toward the transition temperature. A vanishing frequency
implies a vanishing restoring force against the corre-
sponding deformation, which is the reason that vibration
is called a soft mode. The atomic displacements associ-
ated with the soft mode are the same as the deformation
of the structure in the low-temperature phase. For ex-
ample, in the high-temperature phase of PbTiO3 the soft
mode involves the Pb21 and Ti41 cations moving along
[001] with the O anions moving in the opposite direction.
This is the distortion that freezes into the structure in the
low-temperature phase. There is a soft mode in the low
temperature phase, which corresponds to the same atomic
motions but now vibrating about new mean positions. In
the case of PbTiO3 the soft mode in the high-temperature
phase is degenerate, so two corresponding modes are ob-
served in the low-temperature phase. The soft modes in
both phases have been measured by inelastic neutron
scattering (Shirane et al. 1970) and Raman scattering
(Burns and Scott 1970; see Fig. 8.8 in Dove 1993).

Anharmonic phonon theory and the soft mode

The energy associated with the lattice vibrations of a
crystal is usually expressed in terms of the Hamiltonian
for phonons, Hph, which is written as an expansion of the
crystal energy in normal mode coordinates. We first must
define terminology. For a crystal containing N unit cells,
there are N values of the wave vector k. If the same
crystal has Z atoms in the unit cell, there are 3Z phonon
branches. Each phonon branch is then labelled by n. Thus
each phonon mode is labelled by the wave vector and
branch as (k, v). To make the equations compact, we de-
note (k, n) by k, and (2k, n) by 2k. The amplitude of
each phonon k is represented by the mass-weighted nor-
mal-mode coordinate (Dove 1993, Chapter 4). The gen-
eral anharmonic form can be written as (Dove 1993,
Chapter 8)

1 1
2H 5 v Q Q 1 · · · V (k , · · · , k )O O O Oph k k 2k s 1 s2 s!k s$3 k k1 s

· Q · · · Q D(k 1 · · · 1 k ). (21)k k 1 s1 s

The first term is the normal harmonic energy, where vk
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is the harmonic frequency for the phonon k. The remain-
ing terms are the anharmonic components of the energy,
each of order s, where Vs is an energy prefactor, and D(G)
is a function of value unity if G is a reciprocal lattice
vector and zero otherwise. Technically Hph should also
contain the kinetic energy term ½SkQ̇kQ̇2k, but because
we will not make use of this term we will not include it
in our equations. In principle the sum over s in Equation
21 extends to infinite order, but in practice it is usual to
include only the terms for s 5 3 and s 5 4. For the soft-
mode theory the dominant terms are those with s 5 4,
which are the only ones we will consider, so we write

1 1
2H 5 v Q Q 1 V (k , k , k , k )O Oph k k 2k 4 1 2 3 42 4!k k ,k1 2

k ,k3 4

· Q Q Q Q D(k 1 k 1 k 1 k ) (22)k k k k 1 2 3 41 2 3 4

To make progress pairs of normal mode coordinates in
the fourth-order term in Equation 22 are replaced by their
thermal averages, to give an effective Hamiltonian (Blinc
and Zeks 1974):

1 1
eff 2H 5 v Q Q 1O O Oph k k 2k2 4k k k9

· V (k, 2k, k9, 2k9)^Q Q &Q Q . (23)4 k9 2k9 k 2k

The coefficient 1⁄4! in Equation 22 has been replaced by
¼ to account for the number of possible permutations of
the averaging (Blinc and Zeks 1974). Conservation of
crystal momentum requires that ^QkQk9& is only non-zero
if k9 5 2k, and that the only terms allowed in the har-
monic Hamiltonian are those of the form QkQ2k. The ther-
mal average is given in phonon theory by the relation

\ 1
^Q Q & 5 n(ṽ , T) 1k9 2k9 k9[ ]ṽ 2k9

k TBø when k T $ \ṽ (24)B k92ṽk9

where k is the frequency taking account of the anhar-ṽ
monic interactions, and n(v, T) is the Bose-Einstein fac-
tor (Dove 1993, Chapter 4). Thus in the high-temperature
limit Equation 23 can be written as

1
eff 2H 5 v Q QOph k k 2k2 k

k TB 21 V (k, 2k, k9, 2k9)Q Q /ṽ (25)O O 4 k 2k k94 k k9

This is actually in the same form as a harmonic Hamil-
tonian and can therefore be rearranged to give

1 k TBeff 2 2H 5 v 1 V (k, 2k, k9, 2k9)/ṽ Q QO Oph k 4 k9 k 2k[ ]2 2k k9

1
25 ṽ Q Q .O k k 2k2 k (26)

This relation now defines the set of frequencies used2ṽk

above, these are called the renormalized phonon frequen-
cies, and the model as sketched is called renormalized
phonon theory (alternative names are quasiharmonic pho-
non theory or pseudoharmonic phonon theory). The re-
normalized frequencies now have an explicit temperature
dependence directly extracted from Equation 26:

k TB2 2 2ṽ 5 v 1 V (k, 2k, k9, 2k9)/ṽ (27)Ok k 4 k92 k9

This equation has a self-consistent set of solutions for the
renormalized frequencies, although in practice it is com-
mon to replace the renormalized frequencies in the de-
nominator by their harmonic values (Blinc and Zeks
1974).

It should be appreciated that the temperature depen-
dence I have introduced is quite different from that due
to thermal expansion, although thermal expansion is, of
course, also an anharmonic effect. In general the increase
of the crystal volume on heating leads to a reduction of
the phonon frequencies, whereas the direct anharmonic
interactions considered here lead to an increase in phonon
frequencies on heating. In most cases the indirect anhar-
monic effects mediated through the thermal expansion
dominate, but for phase transition theory it is the direct
interactions that are important. These interactions are not
included in modeling techniques that assume that the full
anharmonicity can be accounted for in the thermal ex-
pansion (such as in free-energy minimization techniques).

We now consider the behavior of the soft modes. A
crystal structure that is unstable against a small displacive
distortion will have a corresponding imaginary harmonic
frequency (Dove 1993, Chapter 8). This is seen from the
harmonic term in Equation 21. If the crystal is unstable
against a small displacive distortion that can be expressed
as a normal mode coordinate, the harmonic term QkQ2k

2ṽk

must have a maximum energy when the normal mode
coordinate Qk has a value of zero. This is only possible
if v , 0, that is, the phonon frequency k has an imag-2 ṽk

inary value. We see from Equation 27 that the anhar-
monic interactions increase the phonon frequency on
heating if V4 . 0. Thus if k has an imaginary value atṽ
T 5 0 K, the anharmonic interactions will make the fre-
quency become real for temperatures greater than Tc, the
temperature at which 5 0 in Equation 27:2ṽk

2 2T 5 22v / k V (k, 2k, k9, 2k9)/ṽ (28)Oc k B 4 k91 2
k9

At temperatures greater than Tc the harmonic mode is
stable, . 0, so the high-symmetry phase is also stable.2ṽk

On the other hand, at low temperatures the crystal is un-
stable against displacements that are described by the nor-
mal mode of label k; we can think about the soft mode
being frozen into the structure. Equations 27 and 28 can
therefore be rewritten as

kB2 2ṽ 5 V (k, 2k, k9, 2k9)/ṽ (T 2 T ) (29)Ok 4 k9 c1 22 k9
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FIGURE 8. Schematic representation of the behavior of the
soft mode. At low temperatures (T K Tc) the soft mode is un-
stable, which is represented by . Thus the structure of the high-ṽ
temperature phase is unstable. On heating, the anharmonic inter-
actions make a positive contribution to the value of , until theṽ
frequency reaches zero at the transition temperature (Tc). Above
this temperature the soft-mode frequency has a real rather than
imaginary value, and the high-temperature phase is stable.

FIGURE 9. Temperature dependence of the soft-mode fre-
quencies in SrTiO3. Data are from Fleury et al. (1968, circles,
Raman scattering data), Cowley et al. (1969, crosses, inelastic
neutron scattering data), and Shirane and Yamada (1969, trian-
gles, inelastic neutron scattering data).

Equation 29 yields the temperature dependence of the
soft-mode frequency (Blinc and Zeks 1974; Bruce and
Cowley 1981).

The soft-mode model is pictured schematically in Fig-
ure 8, where we plot the frequency of the soft mode in
the high-symmetry phase as a function of temperature. At
T 5 0 K the structure of the high-symmetry phase is
unstable with respect to the distortion to the low-sym-
metry phase, and the frequency of the soft mode has an
imaginary value. On increasing temperature the anhar-
monic interactions raise the value of . Eventually the2ṽk

contribution of the anharmonic interactions is sufficiently
large that the value of becomes positive, at which point2ṽk

the high-symmetry phase is stable. This defines the tran-
sition temperature. Experimentally the soft-mode fre-
quency is found to fall on cooling toward the transition
temperature, and it often follows the temperature depen-
dence } (T 2 Tc), as predicted by Equation 29.2ṽk

Experimental data for the soft mode frequency in
SrTiO3 are shown in Figure 9 (Fleury et al. 1968; Cowley
et al. 1969; Shirane and Yamada 1969). Below the tran-
sition temperature the triply-degenerate soft mode splits
into two modes, whose frequencies increase with the or-
der parameter (v2 } h2). The atomic motions associated
with the soft mode are the rotations of the TiO6 octahedra
about the three ^100& axes.

The standard paradigm
We now draw the connection with the standard para-

digm (Bruce and Cowley 1981; Sollich et al. 1994). The
normal-mode coordinates are defined as

Ïm
u 5 u exp(ik·R ) (30)Ok j jN j

These give the Fourier transforms of the set of real dis-
placements uj. The Hamiltonian of Equation 2 [compare
with Equation 21] can then be written in the following
form, again dropping the kinetic energy term ½Sku̇ku̇2k:

1
H 5 (J 2 k )u uO k 2 k 2k2m k

k41 u u u u D(k 1 k 1 k 1 k ) (31)O k k k k 1 2 3 41 2 3 424m k ,k1 2

k ,k3 4

where

1
J 5 J exp[ik·(R 2 R )] (32)Ok i jN i,j

and the sum is restricted to nearest neighbors. The quan-
tity (Jk 2 k2) / m is the square of the harmonic frequency
of the vibration with wave vector k. In the case where
the force constants J are positive, Jk 5 0 when k 5 0,
and this is the wave vector of the soft mode. Comparing
with Equation 22 for the general case, k4 is equivalent to
V4 (k1, k2, k3, k4) but is independent of the wave vectors.

Following the methods outlined above, the effective
Hamiltonian can be written as

1 6k4effH 5 (J 2 k )u u 1 ^u u &u uO Ok 2 k 2k k9 2k9 k 2k22m 4mk k,k9

1 3k k T4 B 21ø (J 2 k ) 1 J u u .O Ok 2 k9 k 2k[ ]2m mk k9 (33)

The transition temperature for this model is then given as

mk 12 21k T 5 / J . (34)OB c k1 23k N k4

For the case of the three-dimensional cubic lattice, the
denominator has the value 1.979/J, and because k2 /k4 5
u this gives a derivation of Equation 8. The denominator2

0

in fact plays the same role as 22 in Equations 27 andṽ
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FIGURE 10. Uniform movement of the whole phonon branch
with temperature in the standard paradigm.

FIGURE 11. Schematic representation of the temperature de-
pendence of a hard-mode frequency.

28. The whole branch changes with temperature uniform-
ly as

2 22ṽ 5 J 2 k 1 3k k T ṽ (35)Ok k 2 4 B k9
k9

This behavior is illustrated in Figure 10 and is the con-
sequence of the anharmonic coefficient being independent
of k. In order to determine Tc, as the temperature at which

5 0, the frequencies to use in the denominator in the2ṽk9

last term in Equation 35 are 5 Jk9, which are the values2ṽk9

at the transition temperature.
It must be stressed that the results for any phase tran-

sition can only be compared with this model with great
caution. The model has a softening of a phonon only at
a single wave vector, as expressed in the form of Jk,
Equation 32. In practice the phonon surface may be more
complicated, for example, in the perovskites there is a
soft phonon all across the edges of the Brillouin zone.
Any application of this model must be modified to use a
suitable functional form for Jk (Sollich et al. 1994).

Lattice dynamics and Landau theory
We now generalize the formalism sketched in this sec-

tion to consider the low-temperature phase. The depen-
dence of the lattice energy on the order parameter h can
again be approximated by the simple double-well poten-
tial V(h), exactly as in the standard paradigm described
earlier:

1 1
2 4V(h) 5 2 k h 1 k h . (36)2 42 4

The coefficient 2k2 is now equivalent to the square of
the imaginary harmonic frequency. The relevant part of
the Hamiltonian can now be written as

1 1
2H 5 V(h) 1 v Q Q 1 a Q Q hh* (37)O Ok k 2k k k 2k2 4k k

where we use ak instead of V4 to avoid a large paren-
thetical term. In the high-temperature phase the quantity
that becomes the order parameter h in the low-tempera-
ture phase plays the same role as any other normal mode
coordinate, Qk. It is not included in the last two terms

because the corresponding terms in powers of QkQ2k and
zQkQ2kz2 are explicitly included in V(h), with prefactors k2

and k4 instead of v and ak, respectively. It is assumed2
k

that the phonon frequencies have already been renormal-
ized by their interactions with all the other modes. In the
low-temperature phase Equation 37 can be written as

1 1
2H 5 V(h) 1 v 1 a hh* Q QO k k k 2k1 22 2k

1
25 V(h) 1 v̄ Q Q (38)O k k 2k2 k

where

1
2 2v̄ 5 v 1 a hh*. (39)k k k2

The modified frequency carries information about theṽ
value of the order parameter (Dove et al. 1992a; Dove
1993, Chapter 8), which provides the basis for the new
technique (as applied to mineralogy) of hard-mode spec-
troscopy (Salje 1992b). From Equation 39 we note that
measurements of the way that a phonon frequency at tem-
peratures below the phase transition deviates from the
value extrapolated from the frequency in the high-tem-
perature phase gives direct information on the tempera-
ture dependence of h, i.e., from equation 39 we can de-
termine the order parameter from h2 } ( 2 v ) } Dvk.2 2ṽk k

This is illustrated in Figure 11. Indeed, measurements of
h from changes in phonon frequencies can give the most
accurate data on the temperature dependence of h. This
is the basis for the use of hard-mode spectroscopy, where
the changes in the positions of peaks in Raman and in-
frared spectra are used to determine the behavior of an
order parameter with temperature, annealing time, or
chemical composition (Güttler et al. 1989b; Harris et al.
1989, 1990; Palmer et al. 1990; Poon et al. 1990; Redfern
and Salje 1992; Redfern 1992; Salje et al. 1992, 1993;
Cellai et al. 1995; Zhang et al. 1995).
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FIGURE 12. The potential energy V(h) calculated for quartz
using the interatomic potential of Tsuneyuki et al. (1988). The
points represent actual calculations, and the curve is a fitted form
of Equation (36).

The virtue of using a quasi-harmonic model is that we
can now use the standard expression for the phonon free
energy, Gph, of a set of harmonic vibrations:

\vkG 5 k T ln 2sinh . (40)Oph B 1 2[ ]2k Tk B

Note use of the nomenclature of the Gibbs free energy to
emphasize the contact with experiment, although techni-
cally we are really working with constant volume; the
differences are not significant. We now follow the same
spirit as Landau theory and expand Gph as a Taylor series
in h about the point h 5 0, noting the use of the set of
values of as defined by Equation 39 for the frequenciesṽ
(Dove 1993, Chapter 8). This yields

k T aB k 2G (h) 5 G (h 5 0) 1 h 1 · · · (41)Oph ph 24 v̄k k

To make the nomenclature more transparent, I write
Equation 41 in the form of an Einstein model (although
I will not actually be making an Einstein approximation):

3RTã
2G (h) 5 G (h 5 0) 1 h 1 · · · (42)ph ph 24ṽ

where

1
ã 5 a (43)O k3N k

and

2 2ṽ 5 ã/ (a /v̄ ). (44)O k k
k

If we take the part of that depends on h and add this to
V(h) as defined in Equation (36), we obtain an expression
that is equivalent to the Landau free energy:

1 3ãRT 1
2 2 4G (h) 5 2 k h 1 h 1 k hL 2 422 4ṽ 4

3ãR 1
2 45 (T 2 T )h 1 k h (45)c 424ṽ 4

where Tc is the transition temperature, given by

22k ṽ2T 5 . (46)c 3Rã

This is similar to the form given in Equation 28, where
the square of the imaginary soft-mode frequency has now
been replaced by 2k2.

In principle the expansion of the phonon free energy,
Equation 42, can be extended to higher order. This would
add a temperature-dependent term to the higher order co-
efficients in the Landau free energy. The fourth-order co-
efficient would then be given by

23ã RT
b 5 k 2 . (47)4 4ṽ

The temperature-dependent part of Equation 47 is negli-
gibly small in value compared to the value of k4 (see

below), so that none of the higher order terms in the
expansion of the phonon free energy is important.

Example calculation for quartz
To illustrate the theory of the previous two sections, I

now present a calculation of the Landau free energy func-
tion for quartz. Using the interatomic potential of Tsu-
neyuki et al. (1988) I have calculated the function V(h)
by performing an energy minimization for various fixed
values of the displacement of the O atom from its position
in the high-symmetry phase (unpublished calculation).
The function is shown in Figure 12, fitted by a curve of
the form of Equation (36). The potential energy is rep-
resented reasonably well by the polynomial

2 41 h 1 h
V(h) 5 1.542 3 2 1 kJ/mol. (48)1 2 1 2[ ]2 h 4 h0 0

The phonon frequencies of the high-symmetry phase
were calculated for a set of wave vectors over a fine grid
in reciprocal space and also for a small value of h in the
low-symmetry phase. Taking the differences between the
frequencies gave the result

1
2(a /v ) 5 0.2922 (49)O k kN k

where N is the total number of modes considered in the
calculation (27 000 in this case). It should be noted that
the harmonic frequencies were used in this calculation,
rather than the renormalized frequencies. Substitution of
these values into Equation 46 yields a value for Tc of 578
K. This is lower than the experimental value (848 K), but
part of this discrepancy is due to the use of the harmonic
frequencies in Equation 49. The renormalized frequencies
will be larger than the harmonic values. If we trust our
calculated value of , the value of required to give theã ṽ
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FIGURE 13. Experimental data for the temperature depen-
dence of the square of the order parameter (h2) in anorthite. The
curve is obtained by minimization of the free energy, with ad-
justed average values of v and a. The data are from Redfern and
Salje (1987).

correct transition temperature is larger by only 1 THz,
which is a reasonably small value.

We can also comment on the size of the phonon con-
tribution to the fourth-order term in GL. The calculations
for quartz indicate that the fourth-order term is given as

b 5 6.2 2 (1.0 3 1026 K21) T kJ/mol. (50)

This demonstrates that for temperatures up to values
many times larger than Tc the constant component dom-
inates the whole coefficient.

Quantum effects and saturation of the order parameter
at low temperatures

The complete free energy is given by the sum of Equa-
tions 36 and 40,

1 1 \v (h)k2 4G(h) 5 2 k h 1 k h 1 k T ln 2sinh .O2 4 B 1 2[ ]2 4 2k Tk B

(51)

Although this reduces to the Landau free energy expan-
sion in the high-temperature limit, it also has the correct
thermodynamic limiting behavior at low temperatures,
where the free energy has the form

1 1 1
2 4G(h) ' 2 k h 1 k h 1 \v̄ (h)O2 4 k2 4 2 k

\v̄ (h)k2 k T exp 2 . (52)OB [ ]k Tk B

Without the zero-point phonon motion, the equilibrium
value of h at T 5 0 K is simply obtained from the min-
imum of V(h): h 5 (k2/k4)½. Taking account of the zero-
point motion means the equilibrium value of h at T 5 0
K is obtained by minimization of G(h), giving

k \ a2 k2h 5 2 . (53)O
k 4k v̄k4 4 k

This is lower than the value obtained from minimization
of V(h) alone, which gives the first component of the
right-hand side of the result. Indeed, the second term in
Equation 53 could be large enough relative to k2 /k4 to
drive the transition temperature down to 0 K, or suppress
the transition entirely. Nevertheless, a soft mode will be
observed, but it will never reach zero frequency. At high
temperatures it appears to be falling toward zero at a fi-
nite temperature, but then as this temperature is ap-
proached the frequency will level off. This situation is
observed for a ferroelectric soft mode in SrTiO3 (Cowley
1962).

Minimization of Equation 52 yields the low-tempera-
ture behavior of h:

k \ a \v̄2 k k2h 5 2 1 1 2exp 2O 1 2[ ]k 4k v̄ k Tk4 4 k B

\ a \v̄k k25 h (T 5 0) 2 exp 2 . (54)O 1 22k v̄ k Tk4 k B

This has the correct thermodynamic limiting behavior:
]h/]T 5 0 at T 5 0 K.

Figure 13 shows the application of this model to data
for the order parameter in anorthite (Redfern and Salje
1987) over the range of temperatures from nearly 0 K to
the transition temperature. An Einstein approximation
was used to replace all values of k and ak by averagev̄
values vave and aave respectively, which were optimized by
comparing values of h obtained from the minimization of
G(h) to the experimental data. The same problem has
been tackled from the perspective of the standard para-
digm by Salje and coworkers (Salje et al. 1991; Salje and
Wruck 1991; Salje 1991b).

Essential features for the Landau description
The theory developed above is appropriate when all

the entropy is phonon entropy, with no contribution from
configurational entropy. This is most easily seen in the
context of the standard paradigm. In the limit where the
stiffness of the forces between atoms is large compared
to the local ordering potential, i.e., s K 1, the phonon
theory is the appropriate model to use. In this limit, as
we have seen, the Landau polynomial arises as an expan-
sion of the exact free energy. On the other hand, if some
degree of configurational entropy is significant because
there is some order-disorder component of the phase tran-
sition, we will have terms in the free energy of the form

G 5 2RT[(1 1 h)ln(1 1 h) 1 (1 2 h)ln(1 2 h)]config

2 4' 2RT[h 1 h /6]. (55)

The configurational terms add a term that varies as Th2,
similar to that given by the phonon theory, which acts to
modify the transition temperature from the value given
by Equation 46. However, the configuration terms also
add in terms of the form Th4 (and of all higher even
powers). This means that all the higher-order terms in the
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Landau free-energy expansion are temperature dependent.
Experimentally, though, it is commonly found that h }
(Tc 2T)½ over a wide range of temperatures. The coeffi-
cient of proportionality is given by the ratio of the pre-
factors on the terms in h2 and h4 in the Landau free en-
ergy. That this coefficient is found to be largely
independent of temperature implies that the prefactors in
the Landau free-energy expansion are also independent
of temperature, consistent with the view that the entropy
associated with displacive phase transitions is mostly vi-
brational rather than configurational.

Summary of resolved and open issues
The anharmonic phonon theory has led to a picture of

the phase transition arising as a result of the anharmonic
interactions acting to stabilize a phonon mode that would
otherwise be unstable in a purely harmonic model of the
high-temperature phase. The phase transition occurs at
the temperature at which the soft-mode frequency falls to
zero on cooling. Below this temperature the restoring
force against the phonon distortion vanishes, and the
structure can spontaneously deform. The atomic displace-
ments involved are the same as those associated with the
soft phonon.

From the perspectives of the phonon Hamiltonian and
the phonon free energy, we have shown how Landau the-
ory follows from the phonon theory of the displacive
phase transition, and we have shown how the fundamen-
tal parameters in the Landau free energy function are re-
lated to the microscopic parameters of phonon theory.
The Landau expansion of the free energy with constant
coefficients only arises if the entropy is purely vibration-
al, since the effects of configurational entropy are to make
the coefficients in the Landau free energy expansion tem-
perature dependent. The condition for the entropy to be
mostly vibrational is that the local double-well potentials
should be shallow compared to the strength of the rele-
vant interactions between atoms. We are therefore able to
conclude that for displacive phase transitions Landau the-
ory is not simply a phenomenological description but is
firmly rooted in the soft-mode theory, and although the
parameters of Landau theory may be obtained empirical-
ly, they can in principle be related to fundamental quan-
tities. Finally, we have obtained the behavior at low tem-
peratures when quantum mechanics and the third law of
thermodynamics become significant and when Landau
theory is known to be inappropriate.

We should now think about the things that the theory
has not told us. To start with, the phonon theory of dis-
placive phase transitions is a rather nebulous theory. For
example, the equation for the transition temperature,
Equation 28 or equivalently Equation 46, involves a sum-
mation or average of terms for all wave vectors over the
whole of reciprocal space. With so many terms involved,
it is not easy to relate the final value of the transition
temperature to anything fundamental. Indeed, the theory
has only been worked out in detail for one case study,
SrTiO3 (Bruce and Cowley 1973, 1981). We have not yet

discussed the issue of the origin of the double-well po-
tential that is required for a phase transition to occur, nor
why this double-well potential is weak compared to the
relevant interactions between atoms.

The development of the theory in this section has made
no reference to whether the soft mode is an optic mode
or an acoustic mode. The idea of the soft mode is usually
taken to imply an optic mode, because the soft-mode
model was initially conceived within the context of fer-
roelectric phase transitions (Cochran 1959, 1960, 1981),
where the ferroelectric soft mode is actually implied by
the Lyddane-Sachs-Teller relation (Lyddane et al. 1941;
Dove 1993, Chapter 3). However, for a ferroelastic phase
transition the soft mode will be an acoustic mode at k 5
0, where the slope of the acoustic mode (and hence the
corresponding sound velocity or elastic constant) falls to
zero at the transition temperature. The theory must be
slightly modified when we have a soft acoustic mode. For
example, the coupling constants involving the soft acous-
tic mode, V4(k,2k9, k, 2k9) in Equation 23, will need to
vary as k2 in order that the acoustic-mode frequency in
Equation 27 will equal zero at k 5 0. Moreover, the order
parameter will not necessarily be of the same symmetry
as the corresponding normal-mode coordinate, because
strain is the derivative of the atomic displacements rather
than the actual displacements, so that ak in Equation 37
will not be the same as V4(k,2k9, k, 2k9). Taking account
of these small modifications allows the basic model to
apply also to soft acoustic modes. We will find in the
next section that the behavior of the critical fluctuations
depends on whether the soft mode is an optic mode or
an acoustic mode.

THE RIGID UNIT MODE PICTURE OF DISPLACIVE

PHASE TRANSITIONS IN SILICATES

In an attempt to take the theory of phase transitions
further, recent work has focused on the central role of the
rigidity of the SiO4 (or AlO4) tetrahedra in aluminosili-
cates (Dove et al. 1991, 1992a, 1996b; Dove 1997; Giddy
et al. 1993; Hammonds et al. 1996). The phase transition
in quartz is one example, where the rotations of tetrahedra
lower the symmetry from hexagonal to trigonal (Grimm
and Dorner 1975; Berge et al. 1986; Vallade et al. 1992).
The polyhedral-tilting model (Megaw 1973; Hazen and
Finger 1982) provides a geometric description of the
phase transition. The development of this idea into the
rigid-unit mode model involves identification of a low-
frequency phonon mode that propagates with the move-
ment of the SiO4 (and AlO4) tetrahedra as rigid units with
no distortions (Hammonds et al. 1996). This rigid-unit
mode (RUM) is a natural soft mode for the phase tran-
sition (Dove et al. 1995; Hammonds et al. 1996).

This last statement is more powerful than it appears at
first, because the existence of any RUMs at all in a frame-
work silicate is not trivial. In a simple mechanical struc-
ture, such as a framework structure made of loosely joint-
ed tetrahedra, the number of possible modes of
deformation is simply equal to the difference between the



230 DOVE: DISPLACIVE PHASE TRANSITIONS

FIGURE 14. Illustration of how different arrangements of
rods with cross bracing can allow for the existence of easy modes
of deformation. Each rod has three degrees of freedom, and each
linkage has two constraint equations. In arrangement (a) there
are 12 degrees of freedom and 8 constraints. The difference of
4 includes the trivial two translations and the rotation of the
whole object, and the shear deformation of the structure. In ar-
rangement (b) there are 15 degrees of freedom and 12 con-
straints. The difference of 3 includes only the trivial two trans-
lations and the rotation of the whole object; there is now no
possible shear deformation. Using the same simple counting ar-
rangement (c) appears to have the same number of degrees of
freedom and constraints as arrangement (b), but when the middle
rod is parallel to the two horizontal rods we know that the object
can be sheared as in arrangement (a). This deformation is al-
lowed because the middle rod is controlled by only three con-
straints, two that tie one end onto the vertical rod, and the third
that sets the orientation of the rod to be parallel to the other
horizontal rods. Thus the number of independent constraints is
11.

total number of degrees of freedom, F, and the total num-
ber of constraints, C. Each tetrahedron has six degrees of
freedom. Each corner has three constraint equations that
links it to the corner of the connected tetrahedron, so the
number of constraints per tetrahedron is also six. Thus
the framework structure made of connected tetrahedra ap-
pears to be exactly constrained with F 5 C, and hence
should have no modes of deformation. The fault in this
reasoning is that symmetry can make some of the con-
straints redundant, so that there is a slightly lower number
of independent constraints than the number of degrees of
freedom. This principle is illustrated in Figure 14, where
we show several two-dimensional arrangements of linked
rods with constraints acting at the linkages. For a square
of rods linked at corners and cross-braced by a fifth rod,
the balance between the constraints and degrees of free-
dom allows only for uniform translations and rotations of
the arrangements. However, if the fifth rod is parallel to
two others, the two constraints that act at one end of this
rod can be replaced by a single constraint that the rod
should remain parallel to two others. This reduction in
the total number of constraints then gives back to the
structure one more degree of freedom, which in this case
is the same shear deformation that would occur if the fifth
rod was not in place. The more-detailed examples of two-
dimensional frameworks of linked triangles and squares
are given elsewhere (Dove et al. 1996c; Dove 1997). The
fact that some deformation modes, which are equivalent
to the RUMs in a framework silicate, can exist in a struc-
ture answers the question posed earlier of why phase tran-
sitions are allowed in a framework aluminosilicate crys-

tal. The RUMs play the role of the soft modes in
displacive phase transitions.

Giddy et al. (1993) and Hammonds et al. (1994) have
developed a computational method to determine all
RUMs for a given framework structure, taking account
of all possible wave vectors. The basic idea is very sim-
ple. Each tetrahedron is viewed as a separate rigid body,
and the atoms that are shared by two tetrahedra are count-
ed as two separate atoms called split atoms. Any mode
of deformation in which the rigid tetrahedra rotate and
translate without causing the split atoms to separate is
equivalent to a RUM in a framework silicate, and in this
sense the separation of the split atoms plays the same role
as the distortion of the tetrahedra. This way of thinking
about the structure is easily incorporated into the formal-
ism of molecular lattice dynamics (Pawley 1972; Dove
1993, Chapter 6). The RUMs are then the vibrational
modes calculated to have zero frequency. Our computer
program CRUSH (Hammonds et al. 1994) is freely avail-
able on the World Wide Web (http://www.esc.cam.ac.uk/
mineralpsciences/crush.html). We have found that the
number of RUMs in any structure is usually small com-
pared to the total number of wave vectors, but signifi-
cantly non-zero (Hammonds et al. 1996). Usually RUMs
are confined to wave vectors that lie along lines or on
planes in reciprocal space, but sometimes they exist on
curved surfaces. We give some examples in Table 1. In
our calculations with the constraints that the tetrahedra
are perfectly rigid, and with no intertetrahedral forces, the
RUMs are the modes with zero frequency. In reality the
intertetrahedral forces will be non-zero, and these will
lead to an energy spectrum for the RUMs. Inelastic neu-
tron scattering experiments on leucite (Boysen 1990) and
cristobalite (Swainson and Dove 1993a) give a range of
RUM energies of the order of 0–1 THz (Dove et al.
1995). RUMs have been found by electron diffraction
measurements from tridymite (Withers et al. 1994; Dove
et al. 1996b) and cristobalite (Hua et al. 1988; Welberry
et al. 1989; Withers et al. 1989), where their presence
results in streaks of diffuse scattering corresponding to
the intersections of the planes of the diffraction patterns
with the planes of RUMs.

Implications of the rigid-unit mode model for displacive
phase transitions

The idea of a RUM-driven phase transition is most
easily illustrated with a model of a two-dimensional pe-
rovskite structure as represented in Figure 15. We first
consider the high-symmetry phase, where the squares are
initially aligned as in Figure 15a. If two neighboring
squares rotate by angles w1 and w2, as in Figure 15b, we
can write the energy to lowest order as (Dove et al. 1991,
1992a, 1995)

1
2V(w , w ) 5 K(w 1 w ) . (56)1 2 1 22

This form expresses the fact that the only rotations that
do not involve distortions of the squares, and thus are
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TABLE 1. Numbers of rigid unit modes for symmetry points in
the Brillouin zones of some aluminosilicates,
excluding the trivial acoustic modes at k 5 0

k
Quartz
P6222

Cristo-
balite
Fd3m

Tridy-
mite
P63/
mmc

Sanidine
C2/m

Leucite
Ia3d

Cordi-
erite

Cccm

(0,0,0)
(0,0,½)
(½,0,0)
(⅓,⅓,0)
(⅓,⅓,½)
(½,0,½)
(0,1,0)
(½,½,½)
(0,1,½)

1*(0)
3(1)
2(1)
1(1)
1(1)
1(1)
—
—
—

3(1)
—
—
—
—
—
2*
3(0)
—

6*
6
3*
1
2
2
—
—
—

0
1*
—
—
—
—
1
0
1

5*(0)
—
—
—
—
4(0)
—
0
—

6
6
6
6
0
2
—
—
—

(0,0,j)
(0,j,0)
(j,j,0)
(j,j,j)
(½,0,j)
(j,j,½)
(½2j,2j,0)
(½2j,2j,½)
(0,j,½)
(j,1,j)

3(0)
2*(0)
1(1)
—
1(0)
1(1)
1(1)
1(1)
0(0)
—

2(0)
2(2)
1(0)
3(0)
—
—
—
—
—
1(0)

6
3
1
—
2
0
1
0
1
—

—
1
—
—
—
—
—
—
1
—

0
0
4(0)
0
0
0
—
—
—
0

6
6
6
—
2
0
6
0
—
—

(j,z,0)
(j,0,z)

1(0)
0(0)

0
0

1
2

—
1

0
0

6
0

(j,1,z)
(j,j,z)

—
0(0)

0
1(0)

—
0

1
—

0
0

—
0

Note: Data from Hammonds et al. (1996). An * indicates a RUM that
acts as the soft mode for a displacive instability in either the parent struc-
ture or a related structure. The ‘‘—’’ indicates that the wave vector is not
of special symmetry in the particular structure. The numbers in brackets
denote the numbers of RUMs that remain in the low-temperature phases.

FIGURE 15. The only deformation pattern of an array of cor-
ner linked squares that does not require any distortion of the
squares. (a) shows the ideal high-symmetry phase. (b) shows the
distorted low-symmetry phase.

relatively in low energy, are w1 5 2w2. This is the dis-
tortion shown in Figure 15b. On the other hand, the great-
est distortions of the squares are required when w1 5 w2,
which will lead to the greatest energy. The force constant
K can be interpreted as the force required to distort the
squares, the stiffness of the units.

We can now develop this argument further. Consider a
three-dimensional framework of connected tetrahedra (or
octahedra). For simplicity we subsume all the rigid-body
motions of a tetrahedron into one parameter j, and note
that when two neighboring units move together without
distorting we can say that w1 5 2w2. The energy of the
full framework is given as

1
2V 5 K (w 1 w )O1 i j2 i,j

25 K w 1 K w w . (57)O Oi i j
i i,j

It will become clear shortly why this is written in two
forms, as with Equation 2. The energy as written contains
no forces either to encourage or discourage the rotations
of the tetrahedra; it simply provides the energy that en-
courages the tetrahedra to move in concert so as to avoid
any distortions. First note that in general the high-tem-
perature phases are fully expanded, with the phase tran-
sition involving a reduction in volume. In general the
long-range dispersive interactions involving the highly

polarizable O anions provide an inward pressure that at-
tempts to reduce the volume; I develop this idea later. For
the moment, I can express the effects of this inward pres-
sure as the following energy:

2V 5 2P w . (58)O2 i
i

Any given structure cannot collapse indefinitely. Either
neighboring O atoms get too close, or there is a collapse
of a cavity about a cation that eventually inhibits further
collapse. These effects lead to short-range repulsive forc-
es. The harmonic parts are subsumed within the param-
eters K and P. However, short-range steric forces have a
strong anharmonic component, so we can simply write
the short-range energy as a lowest-order anharmonic
energy:

4V 5 b w . (59)O3 i
i

This also includes the higher-order terms neglected in the
expansion of Equation 56. When we add together these
three contributions, we obtain (Dove et al. 1991, 1992a,
1995)

2 4V 5 V 1 V 1 V 5 {(K 2 P)w 1 bw }O1 2 3 i i
i

1 K w w . (60)O i j
i,j

The important point to note is that this is exactly analo-
gous to the standard paradigm as expressed in Equation
2, where K plays the same role as J, and P and b play
the parts of k2 and k4. Actually the signs of the last terms
are different, but this is not important as it simply ex-
presses the fact that in the standard paradigm two neigh-
boring atoms want to move the same way whereas in this
model two neighboring tetrahedra will rotate in opposite
senses. By identifying K with the high stiffness of the
tetrahedra, and P with the weak internal pressure due to
the long-range dispersive interactions, we note that the
model lies in the limit K k P, which is equivalent to the
displacive limit. This then provides a natural explanation
for the fact that many phase transitions in silicates appear



232 DOVE: DISPLACIVE PHASE TRANSITIONS

to behave as in the displacive limit and are accurately
described by Landau theory.

We can follow further the analogy between the simple
RUM model as represented by Equation 60 and the stan-
dard paradigm. The transition temperature for the stan-
dard paradigm has been given by Equations 8 and 34.
From the analogy we find that the transition temperature
is directly determined by K, the stiffness of the tetrahedra:

kBTc } KP /b 5 Kw2
0 (61)

where w0 is the rotation of the tetrahedra at 0 K. This
equation does not include prefactors (of order unity) that
account for the detailed structure topology, which arise
from the average of J as in Equation 34. We have re-21

k

cently performed a calculation for quartz using a realistic
value for K and taking account of all topological factors,
and we found that it leads to a value of the transition
temperature that is reasonably close to the experimental
value (Dove et al. 1995).

It seems paradoxical that the transition temperature is
determined by the stiffness of the tetrahedra when the soft
mode is a RUM that does not involve any distortion of
the tetrahedra. The point is that the vibrational entropy
comes from all the other phonons, whose frequencies in
the simple model are determined by K acting as a force
constant. The behavior of the phonons was previously
demonstrated in Figure 10, where v2 changes uniformly
for all phonons. The transition temperature in the general
case, Equation 46, is determined by the ratio of the av-
erage v2 to the shift in v,2 which is determined by the
single anharmonic coefficient b.

In this simple approach, we have considered the be-
havior of only one phonon branch, namely that which
contains the soft mode, and we have quietly neglected all
the other phonon branches. Are these neglected phonon
branches important? The general equation for the transi-
tion temperature, Equations 28 and 46, involves contri-
butions from all phonons, not just those on the branch
containing the soft mode. However, lattice dynamics cal-
culations for quartz (Dove 1995) have shown that the
contribution to the thermodynamic functions from the
complete set of phonons are largely self-canceling. Using
the nomenclature of Equation 46, it was found that the
mean value of ak is substantially lower than the magni-
tudes of the individual values of ak, but there is a wide
spread of positive and negative values of ak. From Equa-
tion 46 we see that Tc } ^ak&21. If ^ak& is very small, values
of Tc could be extremely large (because ^ak& involves av-
eraging over large positive and negative terms, its value
is not well constrained), and we come again to an earlier
question of why isn’t Tc ; `. We are rescued by the
branch containing the soft mode. Within the quasihar-
monic approximation this branch is uncoupled from the
other phonon branches and can be described by the stan-
dard paradigm. As noted in this section, the anharmonic
behavior of this branch is determined by the anharmonic
coefficient b that operates equally for all wave vectors.

Thus for this branch the mean value ^ak& 5 b will not
vanish, so that Tc will have a finite (i.e., controlled) value.

The origin of the driving force for phase transitions
Earlier I noted that there are two aspects to the driving

forces for displacive phase transitions in silicates. First,
there is the coupling between neighboring atoms that al-
lows long-range ordering, described by the parameter J
in the standard paradigm. Second there is a longer-range
force that drives the actual deformation, which is de-
scribed by the double-well potential, V(h). The first as-
pect, which involves coupling between local ordering or
deformation, has now been dealt with: It arises from the
stiffness of the tetrahedra that leads to a local deformation
propagating over large distances. We now consider the
origin of the double-well potential V(h). There are three
contributions to V(h) (Dove et al. 1995). First is the effect
of long-range interactions, which some preliminary cal-
culations (unpublished) have suggested are due to the dis-
persive interactions between the highly polarizable O at-
oms. The long-range interactions are attractive and pull
the structure in to the highest density possible. Generally
high-temperature phases have structures of maximum
volume, and any RUM distortion leads to a lowering of
the volume. The structure will collapse until halted by
short-range repulsive interactions. The second contribu-
tion to V(h) is the short-range attraction between a cation,
such as K1 or Ca21, which occupies a large cavity site,
and neighboring O anions. These interactions may lead
to a collapse of the cavity about the cation, which will
propagate over large distance. This collapse is limited by
the size of the cation. The third contribution to V(h) arises
from the energy associated with the Si-O-Si bond angle
(either Si could also be Al). This has an ideal value of
;1458, and bonds with angles that differ from this will
have a higher energy. In some materials like cristobalite,
the high-temperature phase appears to have a bond angle
of 1808 (Schmahl et al. 1992). In reality this will lead to
a degree of disorder with neighboring tetrahedra rotating
to try and reduce this angle (Swainson and Dove 1995),
but in order for as many bonds as possible to have the
ideal bond angle the structure must undergo the displa-
cive phase transition. Thus in cristobalite the energy as-
sociated with the Si-O-Si bond angle contributes to V(h)
as a driving force for ordering. On the other hand, there
are cases where the Si-O-Si bond angle is already near
its ideal value in the high-temperature phase, so the en-
ergy associated with this bond will either oppose the
phase transition, coming in to V(h) with opposite sign to
the first two contributions, or else the phase transition will
involve the RUM distortion with the smallest distortion
of the Si-O-Si bond angle (Dove et al. 1995).

These three contributions to V(h) help to determine
which of the potential phase transitions actually occurs.
For example, in the high-temperature phase of quartz the
Si-O-Si bond angle is already close to its ideal value, and
only a few of the RUM distortions require no change in
this angle. Leucite is like quartz in having the Si-O-Si
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bond angle close to its ideal value in the high-temperature
phase. In this case the bond angle is changed by the all
the RUM distortions, but the RUMs that are associated
with the phase transition are those for which the changes
in the bond angle are smallest (Dove et al. 1995b).

Critical fluctuations
Frequently, the temperature dependence of the order

parameter follows the form of Equation 15, rather than
the more general form of Equation 20 with b , ½. The
case b 5 ½ occurs for mean-field theories, which are
characterized by the existence of long-range ordering in-
teractions. In our standard paradigm, the soft mode falls
to zero frequency at a single wave vector. The range of
interactions can be expressed by the correlation function

^Q(r)Q(0)& 5 ∫^QkQ2k&exp(ik·r)dk (62)

which has been written in terms of a Fourier transform
relationship. The correlation function defines the range
over which two local distortions of the form of the pho-
non eigenvector are correlated. For the purposes of a
phase transition at k 5 0 (actually the arguments hold
whatever wave vector the soft mode has), we can write
Qk50 5 h. Using Equation 24 for ^QkQ2k& Equation 62 can
be written as

^Q(r)Q(0)& 5 kBT∫v exp(ik·r)dk.22
k (63)

The standard paradigm has, for small wave vector, the
form

v ø v 1 aJzkz22 2
k 0 (64)

where a has the dimensions of length and reflects the
interatomic spacing. Equation 64 is an expression of the
fact that vk has a minimum value at k 5 0. Substitution
of Equation 64 into Equation 63 gives the correlation
function:

k T 1B^Q(r)Q(0)& } exp(ik·r)dk (65)E2 2 2v 1 1 j k0

where j acts as a correlation length, defining the range of
interactions:

j2 5 aJ/v .2
0 (66)

The Fourier transform yields

k TB^Q(r)Q(0)& } exp(2r/j). (67)
2 2j v r0

We note two things. First, the inverse of the correlation
length, j21, scales as v0 } (T 2 Tc)½, so that j diverges
on cooling toward the transition temperature, in accord
with standard results for mean-field theories (Bruce and
Cowley 1981; Bruce and Wallace 1989; Yeomans 1992;
Chaikin and Lubensky 1995). Second, the correlation
length scales with J. This is the important result in the
present discussion. Because J is identified with the stiff-
ness of the tetrahedra, which we know to be large, we
can immediately identify the origin of the long-range in-
teractions and the reason that mean-field theory may be

appropriate for displacive phase transitions in framework
silicates.

We have not, however, taken account of any possible
anisotropy of ^QkQ2k& in reciprocal space, or equivalently
of vk. In our analysis we have assumed that vk rises with
k more-or-less equally for all directions of the wave vec-
tor in reciprocal space. The same RUM model that ex-
plains why J, and hence j, is large also suggests that the
assumption of isotropy of ^QkQ2k& may be invalid (Sollich
et al. 1994). In many cases the soft mode is part of a line
or plane of RUMs in reciprocal space (Hammonds et al.
1996, Table 1). This is illustrated for perovskites such as
SrTiO3, (Fig. 2). The TiO6 octahedra in one plane rotate
in concert as in the two-dimensional example shown in
Figure 15. The octahedra in the next plane up also un-
dergo similar rotations, because the common vertices of
octahedra between neighboring planes do not move.
However, the octahedra in the next plane up can rotate in
the same sense or opposite sense to the first plane. In fact
from the point of view of the energy it really doesn’t
matter which way the next plane rotates. The only force
operating will be an anharmonic interaction, mediated by
the strain (} 12 ^cos u&, u is the rotation angle) induced
within a plane when the octahedra rotate, that tries to
make the magnitude of the neighboring rotations, but not
the signs, equal. Thus there is a strong correlation of ro-
tations within each plane, but only a weak correlation
between planes. Experimentally this is seen as a relatively
flat phonon branch for wave vectors along the ^100& di-
rections connecting the zone-boundary wave vectors of
the types {½½0} and {½½½} (Stirling 1972). For the spe-
cific examples of the octahedral-rotation phase transitions
in the perovskites, Sollich et al. (1994) showed that this
anisotropy is important and leads to departures of the
temperature dependence of the order parameter from the
Landau-form over the temperature range ; 0.9Tc # T #
Tc. Whether this anisotropy is important depends on the
balance of two factors. The first factor is the degree of
displaciveness (see Equation 5), which effectively defines
how steeply the soft-mode frequency rises with wave vec-
tor on moving away from the critical wave vector along
a hard direction compared to the square of the imaginary
frequency of the soft mode. The second factor is the vari-
ation of frequency along the RUM branch containing the
soft mode. This factor is more important if the RUM
branch is on a plane of wave vectors rather than on a line
of wave vectors. The balance between these factors has
been quantified numerically, where the range of temper-
atures over which the form h } (Tc 2 T)½ breaks down
(defining the Ginzburg interval) was evaluated as a func-
tion of the two factors. Unfortunately because of a lack
of experimental data for silicates, the size of the Ginzburg
interval for quartz and cristobalite could only be guessed,
and the guesses probably do not have any firm basis (Sol-
lich et al. 1994).

The above arguments hold true when the soft mode is
an optic phonon. When the soft mode is an acoustic pho-
non, with a softening of an elastic constant, the argument
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is rather different but more definitive. It has been shown
that when the soft mode is an acoustic mode with the
softening being restricted to specific directions only,
mean-field theory is exactly correct in three dimensions
(Cowley 1976; Folk et al. 1976, 1979; Bruce and Cowley
1981). This is the case for almost every second-order fer-
roelastic phase transition. When the acoustic modes soft-
en for a plane of wave vectors the situation is more com-
plicated. In three dimensions, deviations from Landau
theory arise only as logarithmic corrections and in prac-
tice are extremely difficult to observe. More dramatic is
the prediction (Mayer and Cowley 1988), recently con-
firmed for the only known example of a second-order
ferroelastic phase transition with planar softening of the
acoustic modes, Na2CO3 (Harris et al. 1993, 1995, 1996;
Harris and Dove 1995; Swainson et al. 1995), that at the
transition the mean-square atomic displacements should
diverge and long-range order completely lost.

The nature of high-temperature phases
We noted earlier that several possible models exist for

the nature of the high-temperature phases. The contrast
of PbTiO3 and BaTiO3 is relatively simple to envision. In
BaTiO3 the positions of the Ti41 cations are disordered,
and this disorder shows up by an overdamping of the soft
mode (Yamada et al. 1969; Harada et al. 1971). On the
other hand, in PbTiO3 the ions simply vibrate about their
average positions, and the soft mode is underdamped
(Shirane et al. 1970; Burns and Scott 1970). Thus locally
the structure of BaTiO3 looks similar to that of the low-
temperature phase on the scale of the unit-cell size, albeit
with dynamic switching between different orientations of
the polar direction, whereas the local structure of PbTiO3

looks like the average structure with the ions vibrating
about their mean positions.

The controversies arise when we consider the nature
of the high-temperature phases of silicates such as quartz
and cristobalite, leaving aside for the moment more com-
plicated aluminosilicates such as leucite and anorthite. In
the high-temperature phase of cristobalite the average
structure deduced from diffraction studies has a linear
Si-O-Si bond (Schmahl et al. 1992). Because it was es-
tablished both by energy calculations (Lasaga and Gibbs
1987, 1988; Gibbs et al. 1994) and by comparison with
other silicates that linear bonds are energetically unfa-
vorable compared to bonds with an angle of around 1458,
it has been suggested that there must be some degree of
disorder in the high-temperature phase. For example, the
Si-O bonds may be tilted at an angle to the ^111& direc-
tions, but their orientations about these directions must
be disordered to be consistent with the crystal symmetry.
Recent measurements of the total neutron scattering in-
tensity from b-cristobalite (Dove 1997, and unpublished
results) yielded a radial distribution function consistent
with an average Si-O-Si angle of around 1458. The prob-
lems come when attempts are made to produce a model
that gives this local structure. Si-O bonds are not inde-
pendent entities, but are part of the SiO4 tetrahedra that

are tightly bound. Therefore the motion of one Si-O bond
will be strongly coupled to the motion of connected Si-O
bonds.

In the case of b-cristobalite two models have been pro-
posed that are based on the existence of domains of lower
symmetry structures (Wright and Leadbetter 1975; Hatch
and Ghose 1991). Similar models have also been pro-
posed for quartz, but in this case the need for a disordered
high-temperature phase seems less clear (Salje et al.
1992). Part of the appeal of domain models is that they
provide the means of accounting for disorder of the ori-
entations of the Si-O bonds and the correlations between
connected Si-O bonds at the same time. Any distortions
of the tetrahedra only occur within the walls between do-
mains. The RUM model provides a way of building up a
domain wall with only a minimum amount of distortion
of the tetrahedra. If RUMs exist over a line or plane of
wave vectors, it will be possible to construct a linear com-
bination of RUM distortions as a Fourier summation over
all wave vectors, leading to a distortion pattern in real
space (Swainson and Dove 1993b; Hammonds et al.
1996; Dove et al. 1996c). This distortion pattern could be
a set of domains with domain walls. But if there is
enough freedom in the Fourier summation, the sizes of
the domains and the sizes of the domain walls could be
arbitrary without significant distortions of the tetrahedra.
Thus the RUM model allows the distinct domains to
evaporate, leaving a dynamically disordered phase that is
generated by a superposition of many large-amplitude
RUM phonons. For b-cristobalite the RUM picture with
dynamic disorder rather than domains has received some
support from light scattering (Swainson and Dove 1993a)
and molecular dynamics simulations (Swainson and Dove
1995).

Part of the problem with understanding the nature of
the high-temperature phases has been the lack of relevant
experimental data. There has been very little inelastic
neutron scattering work on these problems. Several phase
transitions in silicates were studied using NMR (Phillips
et al. 1992, 1993; Phillips and Kirkpatrick 1995; Kirk-
patrick 1988; Spearing et al. 1992, 1994; Stebbins 1988),
but NMR probes a frequency range (typically only up to
the MHz regime) below that of the dynamics of atoms
(around the THz regime). Raman and infrared spectros-
copy are useful tools (Iqbal and Owens 1984; Salje
1992b), because they probe the THz frequency regime
and are sensitive to short-range correlations (Salje
1992b). For the phase transitions in quartz and cristobal-
ite, the spectral lines that are expected to vanish in the
high-symmetry phase, if there are no domains present,
actually do so (Salje et al. 1992; Swainson and Dove
1993a). This suggests that the domain models are not
good models for the nature of the high-temperature
phases of these materials.

EXPERIMENTAL REALIZATION

Simple displacive phase transitions
It is expected that the theory reviewed above should

be directly applicable to the displacive phase transitions
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in minerals such as quartz, albite, anorthite, and leucite.
In these examples the Si-O-Si bond angles in the high-
temperature phases are around 1458, so there will be no
orientational disorder of the tetrahedra in the high-tem-
perature phases. The case of quartz has been documented
in some detail. Indeed, the soft mode in the low-temper-
ature phase quartz was the first ever soft mode to be ob-
served experimentally (Raman and Nedungadi 1940), and
although a lattice dynamic interpretation followed soon
after (Saksena 1940), it was another twenty years before
the soft-mode model was properly formulated. The soft
mode has since been measured in more detail in both
phases by spectroscopy (Shapiro et al. 1967; Scott 1974;
Tezuka et al. 1991) and inelastic neutron scattering (Do-
lino et al. 1992), in relation to both the a-b phase tran-
sition and the incommensurate instability. The soft-mode
model appears to be appropriate for quartz, and the in-
commensurate phase transition is naturally explained by
the RUM model (Berge et al. 1986; Bethke et al. 1987,
Tautz et al. 1991; Vallade et al. 1992). This work in
quartz has been reviewed in detail by Dolino and Vallade
(1992).

Unfortunately there have been hardly any other re-
ported attempts to measure soft modes or RUM spectra
in other silicates. In part this is because such measure-
ments would require a major undertaking. The number of
phonon branches in a complicated silicate is large, mean-
ing that to disentangle the phonon spectra is not easy.
Moreover, because the vibrational energy will be shared
between all phonon modes, the amplitude of any one pho-
non mode, and hence the intensity of the neutron beam
scattering from that phonon mode, will be relatively
weak. To make matters even more difficult, it is quite
likely that at temperatures close to the transition temper-
ature the soft mode will be damped (see the results for
quartz reviewed by Dolino and Vallade 1994). One sys-
tem for which preliminary data have been reported is leu-
cite (Boysen 1990). Tentative low-frequency phonon dis-
persion curves have been proposed. These lend support
to the RUM model of the phase transition in leucite, by
showing the soft phonons involved in the phase transition
(Dove et al. 1995). The soft modes in the low-temperature
phase of cristobalite have been measured by spectroscopy
(Swainson and Dove, unpublished), but in this case the
phase transition is so discontinuous that the softening of
the phonon frequencies on approaching the transition
temperature is not very large.

Order-disorder phase transitions in silicates
The theory reviewed in this article is relevant for cases

in which the entropy is mostly vibrational rather than con-
figurational. How do the ideas apply to a material such
as cristobalite, where the linear Si-O-Si bonds given by
the average structure of the high-temperature phase lead
to a disordered structure in which neighboring tetrahedra
are tilted with respect to each other? The order-disorder
phase transitions can arise as an opposite extreme to dis-
placive phase transitions, where atoms hop between two

potential minima. The example used is the ordering of
the Ti41 cations in BaTiO3. In the disordered phase the
Ti41 cations can occupy one of the eight ^111& sites. The
entropy could be deduced from simple configurational
counting considerations as in the spin-½ Ising model. On
the other hand, in cristobalite the orientation of any tet-
rahedra is constrained by the orientations of the neigh-
boring tetrahedra. If we recast the disorder into Fourier
space, the disorder of the Ti41 cations in BaTiO3 can be
decomposed into Fourier components from all wave vec-
tors. In cristobalite, the disorder arises from superposi-
tions of RUMs of phonons that lie in planes of wave
vectors rather than over all reciprocal space. Therefore it
is quite likely that the entropy from the orientational dis-
order in cristobalite is not large compared with the vibra-
tional entropy from all the other phonons that we have
considered in this review article. This point however has
not yet been quantified; it is one of the open questions
that we leave with this article.

Al-Si ordering in aluminosilicates

A more common type of order-disorder phase transition
involves the ordering of different cations, for example the
ordering of Al and Si framework cations in aluminosili-
cates. The simplest theoretical approach is the Bragg-Wil-
liams model. The ordering energies can be expressed in
terms of an Ising model, Equation 6, where J is the energy
required to form two Al-O-Si linkages from the linkages
Si-O-Si and Al-O-Al. The entropy that drives the disor-
dering at high temperatures is assumed to be configura-
tional, Equation 55. In the simplest model with equal num-
bers of both cations, the free energy is given by

2G 5 24Jh 1 RT[(1 1 h)ln(1 1 h)

1 (1 2 h)ln(1 2 h)]

2 2 4' 24Jh 1 RT(h 1 h /6 1 · · ·). (68)

Calculations have shown that J typically lies in the range
60–100 kJ/mol (Thayaparam et al. 1994, 1996; Dove et
al. 1996a).

For comparison I have performed some calculations
(unpublished) of the phonon spectra of cordierite with
both complete order and disorder appropriate for the
high-temperature phase (the T1 sites have Al occupancy
of ⅔, and the T2 sites have occupancy of ⅓), using the
models described by Winkler et al. (1991). The resultant
entropy leads to an additional term

Gphonon 5 mRTh2 (69)

where m has the value 0.1 (for energy per mole of tetra-
hedra). This is to be compared with a total entropy change
from h 5 0 to h 5 1 of 0.64R per mole of tetrahedra,
assuming that the disorder is completely random. In prac-
tice the entropy change will be less than this, because the
configurations favored in the disordered phase are those
that minimize the total number of Al-O-Al linkages. The
phonon entropy is not as large as the configurational en-
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tropy, but it is not insignificant in comparison. The quan-
titative details are still an open issue.

Orientational ordering phase transitions
The classic example of an orientational order-disorder

phase transition in a mineral is in calcite. Above 1260 K
the carbonate molecular ions become disordered with re-
spect to orientations about their three-fold axes (Dove and
Powell 1989; Dove et al. 1992b, 1997; Hagen et al.
1992). Specifically, in the disordered phase each carbon-
ate ion will flip between orientations that are related by
a rotation of 608 (equivalent to 1808). It might be imag-
ined that this model looks like a simple order-disorder
case, with the ordering driven by nearest-neighbor orien-
tational interactions and the disorder driven by configu-
ration entropy involving two possible orientations of each
carbonate ion. However, the structural investigations per-
formed on heating up to the phase transition reveal a quite
different picture. Instead the orientational disorder is driv-
en by large amplitude librations of the carbonate ions
(Markgraf and Reeder 1985; Dove et al. 1997). The dis-
order sets in when the librational amplitude approaches
308, when the carbonate ions are no longer confined to
the ordering potential. Fourier maps of the nuclear density
show that there is a negligible population of the disor-
dered orientations until very close to the phase transition,
far less than would be expected in a classical order-dis-
order phase transition (Markgraf and Reeder 1985; Dove
et al. 1997). Calculations of the rotational ordering po-
tential similar to Equation (1) indicate that the parameter
s corresponding to Equation 5 is of order unity (Dove et
al. 1997). Thus the phase transition in calcite is mid-way
between the order-disorder and displacive limits (Pad-
lewski et al. 1992). Therefore, there is significant entropy
that comes from the effect of the ordering on the phonons
rather than from the configurational disorder. This behav-
ior was also found in a molecular dynamics simulation
(Ferrario et al. 1994). The quantitative details are still an
open issue.

First-order phase transitions
The theory developed in this article is easily applied

to second-order phase transitions. By an appropriate
choice of V(h), Equation 36, the theory can be applied to
first-order phase transitions. In this section it is worth
airing the question of whether a first-order phase transi-
tion simply follows from the form of V(h), or whether
there is something more significant to the fact of a phase
transition being first-order. From renormalization group
theory it is known that some phase transitions must be
first-order (Bruce and Cowley 1981). Actually this state-
ment is in principle stronger than it might seem at first.
Any phase transition in which there is a coupling of the
order parameter to strain must be first order on the basis
of renormalization group theory (the so-called strain-in-
duced first-order phase transitions; Bruce and Cowley
1981). This is not the same as the origin of a first order
discontinuity from strain coupling in the sense of Landau

theory, but arises from more subtle considerations. How-
ever, the size of the first-order step is likely to be so small
as to be virtually unobservable. There are also other pos-
sible causes of first-order discontinuities that arise in re-
normalization group theory, but again the size of the ef-
fect is not known. Cristobalite is an interesting example
(Schmahl et al. 1992). There is a large discontinuity at
the transition temperature, and it is clear that this does
not arise from the strain coupling in the Landau free en-
ergy. The quantitative treatment of the origin of first-or-
der discontinuities in phase transitions is an open
question.

Phase transitions at high pressures
The theory we have developed is strictly only appli-

cable to phase transitions that occur on changing temper-
ature. It is tempting to tinker with the basic theory to
incorporate the effects of pressure. For example, a term
of the form PV could be added to the free energy, noting
that the change in volume at a phase transition usually
scales as DV } 2h2. When this term is included in the
Landau free energy expansion, Equation 13, there is a
correction to the term that is quadratic in h leading to a
subsequent change in the transition temperature on
changing pressure, i.e.,

1 1
2 2G(h) 5 a(T 2 T )h 1 · · · 2 gPh (70)c2 2

which gives the renormalized transition temperature

T 5 Tc 1 gP/a.*c (71)

This approach, however, is not likely to lead to a quan-
titatively self-consistent model. The problem with chang-
ing pressure is that it always produces a volume change.
The models we have described in this article have as-
sumed that any changes of volume (or, more generally,
to changes of the structure), aside from those associated
with the phase transition, are negligible. The effect of this
is that parameters such as k2, k4, vk and ak, which we used
earlier, can be assumed to be more-or-less independent of
temperature. This assumption is usually reasonable. How-
ever, on increasing pressure it is probable that the values
of all these parameters will change significantly. Al-
though at any fixed pressure the theory we have devel-
oped here is directly applicable, we cannot simply take
that theory and apply it for a fixed temperature with
changing pressure. What we need is a quantitatively
founded (rather than empirical) model for how the basic
parameters to change with pressure; this is our final open
question of this article.

One thing we might expect is that on increasing pres-
sure the value of h2 at 0 K will increase. In a silicate, it
is more likely that the structure will crumple than the
tetrahedra will distort (at least for moderate pressures). In
this case, we expect in the application of Equation 61 for
the transition temperature that K, the stiffness of the tet-
rahedra, will not significantly change with pressure (at
least in the limit of low pressures), whereas w0 will in-
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crease on increasing pressure, leading to a transition tem-
perature that will increase on increasing pressure. This is
the common case. The pressure dependence of w0 will
directly reflect the pressure-dependence of k2 and k4. On the
other hand, the case of anorthite is different, with dTc/dP
, 0 (Hackwell and Angel 1995). We do not know the
reason for this, but part of the explanation may lie in the
fact that the structure can distort with no change in sym-
metry relatively easily, which may lead to a hardening of
the potential opposing ordering of w0 (Hammonds et al.
1996). This has not yet been quantified.

The effect of pressure may be even more complicated.
When we associate the soft mode with a RUM of the
high-symmetry phase, we usually neglect the fact that
there are other RUMs that could be alternative soft
modes. With each RUM there will be an associated set
of k2, k4, vk, and ak. At a fixed pressure, only one set will
give the minimum free energy, and all other sets can be
safely forgotten (more commonly, they are not even
known). However, on increasing pressure the free energy
associated with the RUM that acts as the soft mode at
low pressures may become less significant than the free
energy associated with another RUM. In this case there
could be a phase transition with increasing pressure be-
tween two phases that are daughter structures of the same
high-symmetry phase, even though the symmetry of one
of the two lower-symmetry structures appears to be a sub-
group of the symmetry of the other one. An example of
this is cristobalite. The a-b phase transition involves a
RUM distortion of the high-temperature b phase that
plays the role of a soft mode (Swainson and Dove 1993a).
The high-pressure phase (Palmer and Finger 1994) can
also be viewed as a RUM deformation of the b phase
(Hammonds et al. 1996). However, the high-pressure
phase cannot be derived from the a phase by a RUM
distortion (Hammonds et al. 1996). This means that there
will be a potential energy barrier between the a phase
and the high-pressure phase, and it is probable that one
should really think about the high-pressure phase in re-
lation to the b phase rather than in relation to the a phase,
even though on increasing pressure at ambient tempera-
ture the transition involves a change from the a phase to
the high-pressure phase.

Computational studies of displacive phase transitions
Finally, it is worth noting that computational methods

are playing an increasingly important role in the study of
displacive phase transitions. At one level, simple empir-
ical models can be used to determine the dominant tran-
sition mechanism, as in studies of the phase transitions
in leucite (Dove et al. 1993) and the alkali and calcium
and strontium feldspars (Dove and Redfern 1997). These
calculations can be particularly useful for answering well-
specified questions, even though simple energy calcula-
tions cannot properly incorporate the effects of tempera-
ture. One of the problems with empirical potentials is that
they are optimized against crystal structures, elastic con-
stants, and phonon frequencies, but not against absolute

energies, so it may not be possible to calculate the rele-
vant energies (e.g., the potential V(h) of Equation 36)
with adequate accuracy. As computer power increases,
the way around this problem is to use first-principles
quantum mechanical calculations. These methods have
been used to good effect in determining the transition
mechanisms in the ferroelectric perovskites through cal-
culations of the potential energy wells (Cohen and Krak-
auer 1992; Inbar and Cohen 1996), but applications to
mineralogical problems are presently few. An exception
is the study of possible phase transitions in MgSiO3 pe-
rovskite by Warren and Ackland (1996). Both empirical
and first-principles methods can, at least in principle, be
used to calculate the coeffecients vk and ak in Equation
46. This was done for quartz (Dove et al. 1995, and un-
published); an earlier calculation for SrTiO3 was carried
out by Bruce and Cowley (1973).

To incorporate temperature it is necessary to use Monte
Carlo or molecular dynamics methods. Recently first-
principles methods have been used to calculate effective
interatomic potentials for ferroelectric perovskites for use
in Monte Carlo (Zhong et al. 1994, 1995) and molecular
dynamics (Gong and Cohen 1992) calculations of tran-
sition temperatures. A number of molecular dynamics
simulations of phase transitions in minerals have been
reported (e.g., Tsuneyuki et al. 1988; Tautz et al. 1991;
Ferrario et al. 1994; Swainson and Dove 1995). Very few
simulations have been concerned with calculations of the
phonon spectra beyond the density of states, although the
methods to extract phonon dispersion curves from mo-
lecular dynamics are well established (e.g., Dove 1993,
Chapter 12). Tautz et al. (1991) calculated the phonon
spectra for quartz from a large molecular dynamics sim-
ulation to obtain the fundamental parameters for the the-
ory of the incommensurate phase transition. It is hoped
that these methods will play an increasingly decisive role
in linking the theory of phase transitions to specific case
studies. However, it is essential that these simulations are
large enough. Small samples may have only a few wave
vectors that are essential for the phase transition. For ex-
ample, if a high-temperature phase is formed of a dynam-
ic superposition of RUMs of many wave vectors, and the
simulation only contains a few wave vectors, it is likely
that this would significantly alter the structure of the high-
temperature phase in the simulation. The simulated high-
temperature phase may actually be forced by the finite
size to look like that suggested by the domain models,
and caution should be used when citing the results of
molecular dynamics simulations using small samples in
support of any particular interpretation.

CONCLUSIONS

In this review, I have posed a number of questions that
arise from the existence of phase transitions in minerals,
and I have attempted to answer some of them. In some
respects the underlying physics of the phase transitions
in minerals is no different from that of other materials,
and it is perfectly reasonable to apply standard theories
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to them. But by bringing the stiffness of the SiO4 and
AlO4 tetrahedra into the theory, we have been able to
provide some physical content to the theory, and place
some constraints on the behavior. A number of open
questions have been identified.

One of the aims of this review is to encourage further
quantitative studies of displacive phase transitions in min-
erals. One technique that could be usefully applied to
these studies is inelastic neutron scattering. This tech-
nique has been applied in a few cases, and the success of
these studies will hopefully spur further efforts.

Finally, I remarked earlier that the displacive phase
transitions in minerals may give new insights that are of
value outside of mineralogy. The RUM model can be
extended to non-silicates, and in these cases the corre-
sponding version of the theory will also explain why a
given phase transition might be consistent with the dis-
placive limit. The essential feature will be that certain
bond lengths or contact distances should be nearly rigid.
For example, in close-packed ionic crystals with hard
short-range repulsive interactions, atoms in contact will
move by sliding around each other rather than by squash-
ing into each other. Thus the possible patterns of defor-
mation are limited to the set in which the contact dis-
tances remain constant. Examples are the ferroelastic
phase transitions in Na2CO3 and the molecular system
HCN (Dove et al. 1992a). The strong short-range forces
play the same role as the stiffness of the SiO4 tetrahedra
in determining the displacive limit.
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Harris, M.J., Salje, E.K.H., Güttler, B.K., and Carpenter, M.A. (1989)
Structural states of natural potassium-feldspar: An infrared spectroscop-
ic study. Physics and Chemistry of Minerals, 16, 649–658.
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APPENDIX TABLE: Examples of phase transitions in minerals. Here are tabulated examples of phase transitions in minerals that
occur with either a change in temperature or pressure extracted from an electronic search of the Science
Citation Index for the years 1981–1996. In some cases details such as the symmetry change may still be
unknown or uncertain (marked with a ‘‘?’’). The transformation behavior of some materials may be affected by
sample impurities, sample treatment, or kinetic factors, which can account for some uncertainties. Neither this
listing nor the cited references are comprehensive but are designed to give a range of examples. References
are listed below.

Material Tc or Pc Change Comments

Quartz, SiO2 848 K P6222–P3121 Two-stage displacive phase transition involving an intermediate incom-
mensurate phase. [1]

Cristobalite, SiO2 530 K
1.2 GPa

Fd3m–P41212
P41212–P21

First-order displacive phase transitions involving zone-boundary insta-
bilities. [2]

Tridymite, SiO2 748 K
623 K

P63/mmc–P6322
P6322–C2221

A number of displacive phase transitions occur on cooling. The two
given here involve zone-center instabilities. [3]

Leucite, KAlSi2O6 960 K Ia3d–I41/acd
I41/acd–I41/a

Two-stage displacive phase transition, the first being a ferroelastic
phase transition. Other materials with the leucite structure but differ-
ent chemical composition can undergo other displacive and order-
disorder phase transitions. [4]

Albite, NaAlSi3O6 1250 K C2/m–C1 Ferroelastic phase transition. An Al-Si ordering transition follows at
lower temperatures, but because this does not involve a further
symmetry change it does not lead to a distinct transition tempera-
ture. Substitution of K1 for Na1 suppresses the ferroelastic phase
transition, although the ordering transition is only weakly dependent
on temperature. [5]

Anorthite, CaAl2Si2O6 560 K I1–P1 Displacive phase transition involving a zone-boundary instability. Sub-
stitution of Sr21 for Ca21 allows a ferroelastic phase transition to an
I2/m phase. [6]

Kalsilite, KAlSiO4 A preliminary study indicates the presence of one or more phase tran-
sitions, but details remain sketchy. [7]

Kaliophilite, KAlSiO4 1000 K P6322–P63(?) Apparently a zone-center transition, but details are sketchy. [8]
Calcite, CaCO3 1260 K

1.5 GPa
R3c–R3m
R3c–P21/c

Orientational order-disorder phase transition involving the carbonate
molecular ions. The ordering involves doubling of the size of the
unit cell. An additional phase transition occurs at 2.2 GPa. [9]

Soda niter, NaNO3 560 K R3c–R3m Orientational order-disorder phase transition involving the nitrate mo-
lecular ions. The ordering involves doubling of the size of the unit
cell. [10]

kermanite, Ca2MgSi2O7, and relatedÅ
melilites

343 K P421m–Inc. Incommensurate displacive phase transition. A possible phase transi-
tion to another commensurate phase at low temperatures has not
yet been identified. [11]

Cordierite, Mg2Al4Si5O18 P6/mcc–Cccm Al-Si ordering transition [12]
Perovskite, CaTiO3 1384 K

1520 K
Cmcm–Pbnm
Pm3m(?)–Cmcm

Displacive phase transition involving tilt of TiO6 octahedra, with evi-
dence of phase transitions to tetragonal and cubic phases at higher
temperatures. [13]

Titanate, CaTiSiO5 497 K C2/c–P21/a Zone-boundary displacive phase transition. [14]
Staurolite Ccmm–C2/m Al-vacancy ordering transition. [15]
Colemanite, CaB3O4(OH)3·H2O 270 K P21/a–P21 Ferroelectric phase transition. [16]
Chlorapatite, Ca5(PO4)3Cl 620 K P63/m–P21/a Ferroelastic phase transition. [17]
Cryolite, Na3AlF6 820 K Immm–P21/n [18]
Langbeinite, K2Cd2(SO4)3 P213–P212121 Transition temperature depends on composition, with several possible

substitutions of the Cd21 cation. [19]
Natrite (Gregoryite), Na2CO3 760 K P63/mmc–C2/m Ferroelastic phase transition involving the softening of the C44 elastic

constant. [20]
Ilvaite, CaFe2Si2O2(OH) 346 K Pnam–P21/a Phase transition driven by ordering of electrons on the Fe sites. [21]
Sodalites Sodalites of different composition can undergo displacive phase tran-

sitions, Al-Si ordering phase transitions, and phase transitions in-
volving orientational ordering of molecular ions in the large cavity
coupled to displacive distortions of the sodalite framework. [22]

Brucite, Mg(OH)2 6–7 GPa Possible phase transition involving ordering of H atom. [23]
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APPENDIX—Continued.

Garnets
Several postulated cation-ordering phase transitions based on different
observed ordered structures. [24]

Material Tc or Pc Change Comments

Gillespite, BaFeSi4O10 1.8 GPa P4/ncc–P21212 First-order phase transition, mostly displacive in character but also in-
volving some changes in coordination. [25]

Ferrosilite, FeSiO3 1.4–
1.8 GPa

C2/c–P21/c Displacive phase transition. Similar transitions are found in other pyrox-
enes. [26]

Arcanite, K2SO4 860 K P63/mmc–Pmcn Orientational ordering of SO anions. [27]22
4

Sanmartinite, ZnWO4–scheelite, CuWO4 P2/c–P1 Jahn-Teller phase transition as a function of composition. [28]
Chiolite, Na5Al3F10 150 K P4/mnc–P21/n Displacive phase transition. [29]
Schultenite, PbHAsO4 313 K P2/c–Pc Ordering of the hydrogen bond. [30]
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