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ABSTRACT

The rigid-unit mode model provides many new insights into the stability and physical
properties of framework silicates. In this model the SiO, and AlO, tetrahedra are treated
as very stiff, to a first approximation as completely rigid, in comparison with intertetra-
hedral forces. In this paper we apply the model to several important examples. The model
is reviewed by a detailed study of quartz, and it is shown that the a-8 phase transition
involves a rigid-unit mode that preserves the Si-O-Si bond angle. The model is used to
explain the phase transitions in cristobalite and the different feldspar, sodalite, and leucite
structures. We also use the model to explain the nature of the high-temperature disordered
phases of cristobalite and tridymite, to interpret the observations of streaks of diffuse
scattering in electron diffraction patterns, to interpret the structures in the kalsilite-neph-
eline solid solution, to explain volume anomalies in the cubic leucite structures, and to
explain qualitatively the negative linear thermal expansion in cordierite. The results for
the highest symmetry sodalite structure show that there is a rigid-unit mode at every wave
vector, a finding with significant implications for the understanding of the sorption and

catalytic behavior of zeolites.

INTRODUCTION

Over the past decade a lot of work has been concerned
with characterizing the structural, thermodynamic, and
kinetic properties of phase transitions in minerals. One
successful approach has been the use of Landau theory to
provide a thermodynamic framework with which to link
a wide range of observations (see, for example, Salje 1990).
But little attention has been paid to the general question
of why these phase transitions occur, and to specific is-
sues such as why Landau theory often provides a good
description of the behavior associated with a phase tran-
sition over a wide range of temperatures, including close
to the transition temperature (Dove et al. 1992; Dove
1997).

Some of these issues can be tackled by starting with
the simple observation that the forces that operate within
SiO, and AlQ, tetrahedra are much stronger than the
forces that act between these tetrahedra, such as the force
associated with the bending of the Si-O-Si bond. The
starting point is a simple, yet instructive model in which
the tetrahedra are assumed to be completely rigid. The
next stage in this model is to include the forces that allow
deformation of the tetrahedra and the weaker forces that
operate between tetrahedra. From the simplest version of
this model there follows, for example, an explanation of
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why displacive phase transitions are so common in
framework silicates, the realization that the transition
temperatures are simply related to the stiffness of the tet-
rahedra, and an understanding of why many displacive
phase transitions can be described by Landau theory
(Dove et al. 1991, 1992, 1995; Dove 1997). These, and
several other results, have been obtained in the general
case, and it is clear from the formulation that the results
are applicable to any silicate, but they have been tested
in detail only for the a-8 phase transition in quartz (Val-
lade et al. 1992; Tautz et al. 1991; Dove et al. 1995, and
in preparation). It is the purpose of this paper to apply
these ideas to several important silicates.

The essential feature in our model is the concept of the
rigid-unit mode (abbreviated as RUM). This is a vibra-
tional mode that can propagate in a framework structure
with no distortion of the tetrahedra, which rotate and
translate as rigid units (Dove et al. 1991, 1992; Giddy et
al. 1993). These modes have low frequencies and are
therefore candidates for the classical soft modes associ-
ated with displacive phase transitions. In general, RUMs
are thermally excited, but they can also lead to static dis-
tortions of any structure in different ways to accommo-
date large or small cations (Dove et al. 1991, 1996a).
Thus, the RUM model can be applied directly to the two
problems of displacive phase transitions and cation-or-
dering phase transitions. To some extent the RUM model
is closely related to the “polyhedral-tilting” description
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of phase transitions (Hazen and Finger 1982). We further
aimed to develop a method for calculating all possible
RUM distortions of a framework structure (Giddy et al.
1993; Hammonds et al. 1994), to recognize the implica-
tions of the existence of RUMs as vibrational modes of
motion and of their role in generating the static distor-
tions of the structure (Dove et al. 1991, 1995, 1996a),
and to link the finite stiffness of the tetrahedra to a broad
range of phenomena in a single model (Dove et al. 1993,
1995).

In the present paper we consider several examples of
structures to highlight features of the RUM model. A
discussion of the background of the RUM model, includ-
ing its relationship to earlier models and the methods we
developed to calculate the RUM spectrum for any given
structure, is provided in the next section. The following
sections discuss several examples that illustrate and de-
velop different features of the model. These show how
the RUM model can be used to explain (1) the occurrence
of displacive phase transitions, (2) the effect of a phase
transition on measured phonon frequencies, (3) the na-
ture of high-temperature phases, (4) the observations of
strong streaks of diffuse scattering in electron diffraction,
(5) the way a structure relaxes to accommodate cation
ordering, (6) how we can distinguish between elastic in-
stabilities and displacive phase transitions involving soft
optic phonons, (7) the dependence of a displacive phase
transition on chemical composition, (8) the reasons why
Landau theory should be directly applicable to the dis-
placive phase transitions found in aluminosilicates, (9)
the possibility of having local distortions of open struc-
tures typified by zeolites without significant distortions of
neighboring regions, (10) how the size of cations in struc-
tural cages affects the volume of a structure, and (11) the
possibility of negative thermal expansion. Because of the
wide scope of phenomena we describe, no attempt is made
to cover every aspect of each structure in depth. Rather,
we use the different structures to introduce and discuss
certain ideas that have wider applicability because they
are more clearly seen in these structures or for some other
reason such as the availability of experimental data or
detailed calculations. Because our computer program for
calculating the RUM spectra of framework structures is
freely available, some of the other details are left for the
interested reader to pursue in more depth. Indeed, one of
our aims in the present work is to stimulate others to
apply RUM analysis to other structures.

In this paper we mostly restrict our attention to RUMs
with special wave vectors, whether special points, along
symmetry axes, or on planes of symmetry. Intuitively we
might expect that RUMs would be found only for special
wave vectors, and this intuition is partly supported by
our analysis, but we found examples of the occurrence of
RUMs on curved lines or surfaces of wave vectors that
have no relationship to the symmetry axes. Because one
of the main objectives in this paper is to relate the RUM
spectra to displacive phase transitions—and generally
displacive phase transitions involve an instability at a
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special wave vector—we mostly report the RUM spectra
for special wave vectors.

RIGID TETRAHEDRA AND THE CONCEPT OF THE
RIGID-UNIT MODE (RUM)

Summary of previous related work

Since the first X-ray diffraction studies of silicates, it
has been recognized that the strength of the SiO, tetra-
hedra plays an important role in both the structure and
stability of any framework silicate. For a long time this
fact has been exploited in the distance least-squares tool
for the prediction of new silicate crystal structures. Re-
cent ab initio calculations of the bonding of silicates have
shown that the force constants associated with stretching
of the Si-O bonds and bending of the O-Si-O bond angles
are much stronger than the interactions between neigh-
boring tetrahedra (e.g., Lasaga and Gibbs 1987, 1988),
such as the force constant for bending of the Si-O-Si bond
angle. Computational methods such as lattice-energy
minimization techniques frequently use transferable po-
tentials for silicates (Dove 1989; Winkler et al. 1991; Pa-
tel et al. 1991), which reflects the common experience
that the Si-O bond length is nearly a universal quantity.
Crystal fields always give a small perturbation of the shape
of the tetrahedra, but these effects are usually on the order
of only 1% at most, and recent analysis of the displace-
ment parameters measured in crystal-structure analysis
has confirmed that the largest components of thermal
motion involve the tetrahedra moving as rigid units
(Downs et al. 1990, 1992; Boisen et al. 1990; Gibbs et al.
1994).

It has long been recognized that the tetrahedra usually
retain their size and shape when a framework silicate un-
dergoes a displacive phase transition. Megaw (1973) dis-
cussed this point at some length. She included in her ex-
amples the «-8 phase transition in quartz and the
distortions of the C2/m feldspar structure from an ide-
alized structure by rotations of the tetrahedra that do not
break the symmetry. These ideas were further quantified
by Grimm and Dorner (1975) in their analysis of the
phase transition in quartz. By assuming that the tetra-
hedra were perfectly rigid these authors were able to de-
fine all the changes in the structure on the basis of one
parameter (a rotation angle), which could be identified
with the order parameter, and they found that the ob-
served structural changes follow the predictions of the
rigid tetrahedra model remarkably well. The only diffi-
culty with this approach was that the model gave values
for the unit-cell parameters that were too large at high
temperatures, a point that we will comment on later.

Grimm and Dorner (1975) were the first to note that
the soft mode for the phase transition in quartz should
also involve the tetrahedra moving as rigid units, given
that the atomic motions associated with the soft mode
should correspond to the displacements associated with
the phase transition. This point has been developed in
later lattice-dynamics studies of quartz (Boysen et al. 1980;
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Berge et al. 1986; Bethke et al. 1987; Dolino et al. 1989,
1992; Vallade et al. 1992). From inelastic neutron-scat-
tering measurements of the « phase of quartz, Boysen et
al. (1980) observed a mode at wave vector (¥2,0,0) of M,
symmetry that softens considerably on heating to the
phase transition. These measurements were found to be
consistent with a model in which the atomic motions
associated with the M, phonon in the high-temperature
phase of quartz perfectly preserve the shape and size of
the SiO, tetrahedra. However, we show below that in the
low-temperature phase this mode must involve distor-
tions of the tetrahedra, which accounts for the high fre-
quency at low temperatures.

Vallade and coworkers (Berge et al. 1986; Vallade et
al. 1992) were the first to realize that the idea of lattice
vibrations in which the SiO, tetrahedra move as rigid
units may have some important quantitative implica-
tions beyond the simple empirical observation. These
workers were interested in the transition to the incom-
mensurate phase that exists over a temperature range of
1.5 K between the « and 8 phases and found that the
incommensurate instability could arise as a natural con-
sequence of the existence of a line of RUMs on the branch
between (0,0,0) and (*,0,0). To demonstrate this point,
Vallade calculated the complete set of RUMs for all spe-
cial and general wave vectors (Berge et al. 1986, Vallade
et al. 1992).

The RUM idea has been explored in some detail in the
study of glasses (Dohler et al. 1980; Thorpe 1983; He and
Thorpe 1985; Cai and Thorpe 1989), in which the RUMs
are called “floppy modes™ (Buchenau et al. 1984, 1986).
The analysis of floppy modes in glasses has been based
on topology and the balance between the number of de-
grees of freedom, F, and the number of constraints, C
(Marians and Burdett 1990; Marians and Hobbs 1990a,
1990b). The number of floppy modes in any system is
equal to F — C. The existence of floppy modes has been
shown to account for the existence of glass formation as
a function of chemical composition and for the low-tem-
perature transport properties of glasses. For networks of
connected tetrahedra there are six degrees of freedom per
tetrahedron (three translations and three rotations), and
in the simplest way of counting constraints there are three
constraint equations associated with the positions of each
vertex linking two connected tetrahedra. Because these
three constraints are shared by two tetrahedra, and there
are four vertices in a tetrahedron, there are six constraints
per tetrahedron. Hence, the simple application of these
ideas to framework silicate crystals leads to the prediction
that F = C, which suggests that silicates are finely bal-
anced, neither underconstrained nor overconstrained, with
the number of rigid-unit modes being exactly zero. How-
ever, we demonstrated elsewhere (Dove et al. 1992, 1996a;
Giddy et al. 1993) that symmetry can cause some con-
straints to be degenerate and hence no longer indepen-
dent. This means that ¥ — C is no longer zero, and a
finite number of rigid-unit modes is present, although the
number may be small in comparison with the total num-
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FIGURE 1.

Polyhedral representation of an idealized two-di-
mensional perovskite structure, showing the open high-symme-
try structure (left) and the collapsed lower symmetry structure
formed by rotations of the polyhedra (right). The outlines of the
unit cells are marked in both cases, highlighting the change in
the unit cell that results from the phase transition.

ber of normal modes in the crystal. In any case, silicates
represent the marginal case, having neither completely
rigid frameworks with C > F nor being completely floppy
with C <« F. Instead, it is generally the case that C < F
with only a few rigid-unit modes, indeed on the order of
zero in comparison with the total number of modes, but
we report some examples in this paper where the number
of rigid-unit modes is, perhaps surprisingly, relatively
large.

Optic and acoustic modes

The RUM in quartz that acts as the soft mode for the
a-f3 phase transition is an optic mode, as are many of the
RUMSs discussed in this paper. However, it is also pos-
sible to have acoustic RUMs other than the expected three
acoustic modes with w = 0 at k = 0, i.e., the three uniform
translations. In one type of acoustic RUM the acoustic
mode is a RUM for all wave vectors between £ = 0 and
a zone-boundary point. In a second type of acoustic RUM
the acoustic mode frequency varies as w o k2 rather than
as w « k. This implies that an elastic constant (or appro-
priate combination of elastic constants) is zero. The RUM
is then better described as a strain distortion rather than
as a phonon distortion. Either of these two types of acous-
tic RUMs can act as soft modes for ferroelastic phase
transitions. However, the distinction between acoustic and
optic modes is technically possible only in the limit k —
0 because away from this limit it is commonly found that
some optic distortions can mix into the acoustic modes.

Example of perovskite

It is useful to illustrate some of the essential ideas out-
lined above with reference to the perovskite structure ide-
alized as a framework of connected octahedra. Figure 1
shows part of a two-dimensional layer. If motion is re-
stricted to only two dimensions, there are ways that the
octahedra can move without distorting. The first two are
the uniform translations along two orthogonal directions,
which correspond to the k = 0 acoustic modes. The third
is the uniform rotation of the whole sample. The fourth
type of motion, which is the important motion in the
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present context, is the rotation of the octahedra in which
neighbors rotate in equal and opposite senses as illus-
trated in Figure 1. This is a RUM that corresponds to a
rotational phonon with wave vector (Y2,%) in the two-
dimensional Brillouin zone. In three dimensions, the lay-
ers above and below can distort in the same way, but
because there is no coupling between layers for this mo-
tion the relative phase between layers is arbitrary. Thus,
there is a RUM involving rotation about [001] for every
wave vector along the line ('2,%,£) in reciprocal space,
and also along the symmetry-related directions along the
edges of the cubic Brillouin zone. Where these lines in-
tersect at the corners there is a triply degenerate RUM.
This picture has been discussed in more depth by Giddy
et al. (1993) and Sollich et al. (1994).

In the low-temperature phase, illustrated in Figure 1,
the octahedra can rotate only if there is a corresponding
linear change in the unit-cell size. The fact that the RUMs
are normal modes of vibration implies that any changes
in volume couple with the RUM displacements only to
higher order. Thus, in the low-temperature distorted phase
the rotational mode is no longer a RUM. In general there
are fewer RUMs in lower symmetry phases, which fol-
lows from the fact that lower symmetry leads to fewer
degenerate constraints and hence a reduction in the num-
ber of allowed RUMs. In three dimensions, if the struc-
ture distorts at the phase transition by rotations of the
octahedra about [0,0,1], the only RUMSs that remain are
for wave vectors (£,0,0) and (0,£,0).

This simple RUM description of the rotational pho-
nons in the perovskite structure is supported experimen-
tally for systems like SrTiO,. Inelastic neutron-scattering
measurements (Stirling 1972) have shown that the pho-
nons all along the RUM lines have low frequencies,
whereas the phonons for wave vectors away from these
lines have rapidly increasing frequencies. The phase tran-
sition in SrTiO; involves a softening of the triply degen-
erate RUM at (%,'%,%). The whole line of RUMs softens
uniformly on cooling toward the transition temperature,
but the RUM frequency at (Y2,'%,%2) is slightly lower than
at (*2,%,0), so the instability occurs first at (‘2,%,%).

The example of the perovskite structure illustrates sev-
eral important ideas that recur throughout our different
examples of framework aluminosilicates in this paper.
First, the soft mode for the phase transition is a RUM.
Second, RUMs are not restricted to single wave vectors
but can occur along lines in reciprocal space. Indeed, in
some examples RUMs occur for planes of wave vectors,
and in one example there is one RUM for each wave
vector throughout the Brillouin zone. Third, the change
in symmetry that is caused by a phase transition also
results in a change in the number of allowed RUMs. This
is due to a corresponding decrease in the degeneracies of
the constraints alluded to above.

The example of perovskite is in some respects rather
trivial because the role of the RUM is self-evident. In-
deed, for other examples the fact that both high- and low-
symmetry structures can form with ideal tetrahedra pro-
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vides a posteriori evidence that the phase transition be-
tween the two structures must involve condensation of a
RUM. However, our analysis goes beyond this trivial a
posteriori evidence because the simple prediction of a
RUM soft mode is only part of the story. Often it is also
important to know whether the RUM occurs at a single
wave vector in reciprocal space, or whether the RUM is
part of a line or plane of RUMs, as in perovskite. For
example, issues such as the nature of the high-symmetry
phase and the role of critical fluctuations (Sollich et al.
1994) both hinge on this aspect. This information cannot
be deduced from a posteriori reasoning or any other means
of reasoning. The factors determining the phase-transi-
tion temperature, and cation ordering, are other issues
involving the concept of rigid-unit modes in nontrivial
ways.

Some notes on the calculation of RUMs

The important computational approach in our work is
the calculation of the rigid-unit mode spectrum for each
structure of interest. We used the split-atom method of
Giddy et al. (1993). The rigid tetrahedra are considered
to be the independent molecules, and each O atom that
is shared by two linked tetrahedra is considered to be two
individual ““atoms™ separated by a distance of zero. To
prevent the split atoms from separating, a strong har-
monic force acts between them. The dynamical equations
of this model are then solved using standard methods for
the calculation of the phonon-dispersion curves for mo-
lecular crystals. The RUMSs are calculated to be the nor-
mal modes in which the split atoms move together, and
thus they have a calculated frequency of zero. The split-
atom method has been programmed into a standard mo-
lecular lattice-dynamics program (Pawley 1972; Dove
1993). The method, and the resultant program called
CRUSH, have been described in detail elsewhere (Giddy
et al. 1993; Hammonds et al. 1994). Although the split-
atom method may initially seem to be rather artificial,
the split-atom force constant is formally identified with
the stiffness of the tetrahedron (Dove et al. 1996a). We
therefore chose a value for the split-atom force constant
that reproduced the experimental range of phonon fre-
quencies, excluding the highest energy Si-O stretching
modes.

The split-atom model has been extended to include
interactions between the centers of the tetrahedra, mod-
eled as a harmonic energy that changes if the separation
between the two centers changes (Hammonds et al. 1994).
This can be interpreted physically as an attempt to main-
tain a constant Si-O-Si bond angle. RUMs that do not
involve any change in this angle are described as ‘““tor-
sional modes,” and this interaction is called the *“‘torsion-
al interaction.”

In some cases our calculations were performed using
structures with geometrically perfect tetrahedra, which
were set up using a program called IDEALISER. Analysis
of the results of a CRUSH calculation was performed
using a second program, which includes an interface to
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the group-theory program of Warren and Worlton (1974)
for the assignment of mode symmetries to the RUMs.
These two programs have been described by Hammonds
et al. (1994) and together with the CRUSH program
are available on the World Wide Web at http://
www.esc.cam.ac.uk/mineral_sciences/crush.html.

In all our tabulations of RUMSs we defined the wave
vector with the use of the standard nomenclature for the
special points in the Brillouin zones as used by Stokes
and Hatch (1988)—points on the surface of the Brillouin
zone are given by Roman letters, and inside the Brillouin
zone by Greek letters—although in the tables the wave
vectors are given explicitly. In general the symmetries of
the RUMs are not specified to reduce the complexity of
the tables, but the degeneracies of the modes are specified
using the labels A for a single mode, E for a doubly de-
generate mode, T for a triply degenerate mode, and F for
a quadruply degenerate mode. When the symmetry of a
mode is given, it is represented by the symbol for the
wave vector, which defines the point symmetry of that
wave vector, and a subscript label, which defines the ir-
reducible representation of this point group. The labels
are fully consistent with the usage of Stokes and Hatch
(1988). For example, in 8-quartz the wave vector at the
center of the Brillouin zone is labeled T, and the modes
at the zone center are labeled I',—I';. In other cases some
of the irreducible representations are two- or three-di-
mensional, and to indicate this an appropriate superscript
is added. For example, in the case of the cubic §-cristo-
balite, there are two two-dimensional modes at the (1,0,0)
zone-boundary point, which are labeled 2X; and 2X,. On
the other hand, for modes at the zone center it is common
to employ the spectroscopic notation, for example, A,, or
E,.. A consistent nomenclature is not used for symmetry,
but for each material the conventions set by previous
workers are followed.

Quasi-RUMs

We usually think of the phonon modes that are not
RUMs as having reasonably high frequencies because the
forces involved in distorting the SiO, tetrahedra are large.
In the case of the optic modes in 8-quartz at k = 0, our
split-atom calculations give a single RUM, two modes at
~3 THz and a band of modes between 13 and 25 THz.
There is, however, a continuum of frequencies from 0
THz upward when taking account of the modes at k # 0
that are RUMs at special wave vectors because their fre-
quencies increase for wave vectors away from their spe-
cial positions. This, of course, is exactly as expected and
does not lead to any important consequences.

By way of comparison, the range of the mode frequen-
cies calculated for both g-cristobalite and high-tridymite
at k = 0 is 10-24 THz, using the same split-atom force
constant. On the other hand, for cordierite the corre-
sponding range is 0.6-26 THz, and for leucite it is 0.4—
25 THz. For these relatively complicated crystal struc-
tures, containing several tens of tetrahedra in each unit
cell, there is scope for some of the normal modes to in-
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volve just a relatively small amount of distortion. Indeed,
for some wave vectors in these materials the frequencies
can be considerably <1 THz. In these cases the distinc-
tion between RUMs and other modes becomes blurred.
We call any such low-frequency mode a quasi-RUM, or
QRUM. It should be noted that the value of w? for any
QRUM is a measure of the magnitude of the distortion
of the tetrahedra caused by this vibration.

One might expect a structure to have more QRUMs if
it is geometrically similar to some parent structure with
greater symmetry, with more true RUMSs. The frequen-
cies of these QRUMs increase rapidly as the amplitude
of the distortion relating the parent and daughter struc-
tures increases, such as when the temperature is lowered
below a displacive phase transition. Also, such QRUMs
are not usually scattered evenly over the Brillouin zone
but occur in the lines and planes in reciprocal space that
contain RUMs in the parent structure.

QUuARTZ
The phase transitions in quartz

The stable polymorph of SiO, at ambient temperature
and pressure is a-quartz, which has a trigonal structure
with space group P3,21. At 846 K quartz undergoes a
first-order phase transition to an incommensurate phase,
and at only 1.5 K higher there is a second-order displa-
cive phase transition to the hexagonal 8 phase, with space
group P6,22 (Dolino 1990). Although the a-incommen-
surate phase transition is first order, the discontinuities
in the crystal properties are small, and the order param-
eter has a temperature dependence that is close to that of
a classical tricritical phase transition (Carpenter et al., in
preparation). The incommensurate phase transition is
caused by the softening of a phonon at the wave vector
k =~ 0.05a*. These phase transitions were recently re-
viewed by Dolino (1990).

RUM s in the « and 8 phases of quartz

The complete set of RUMs for both the « and 8 phases
of quartz are given in Table 1. The results for the 8 phase
of quartz are in complete agreement with the results ob-
tained by Vallade et al. (1992). However, we explicitly
incorporate the zone-boundary points, which were not
included in the results of Vallade et al. (1992). The RUMs
in 8-quartz that occur in planes of wave vectors in Table
1 are acoustic modes. The results for the « phase have
not been given elsewhere.

The results of Table 1 for 8-quartz have been con-
firmed by inelastic neutron-scattering experiments (Berge
et al. 1986; Bethke et al. 1987; Dolino et al. 1992). The
optic RUMs were found to be of low frequency along the
lines in reciprocal space predicted in Table 1. On cooling
toward the phase transition the lines of RUMSs were found
to soften almost uniformly.

The I's RUM of the 8 phase is the soft mode of the a-8
phase transition, and its eigenvector is identical to the
distortion found in the « phase (Giddy et al. 1993). The



1062

HAMMONDS ET AL.: RIGID-UNIT PHONON MODES

TasLE 1. Rigid-unit modes for the hexagonal and trigonal structures
B-quartz a-quartz Tridymite Kalsilite Nepheline Cordierite
P6,22 P3,21 P6,/mmc P8, P8, P6,/mmc
T (0,0,0) A 2A + 2E E E 2A + 2E
A (0,0,%2) A+E A E+F 2E E+F
H (V3,Y3,%2) A A 2A E
K (¥5,Y5,0) A A A A 2A +E 2A + 2E
L (2,0,%2) A A E E
M (¥2,0,0) 2A A 3A A 4A 6A
A(0,0,8) 3A 2A + 2E 4A 2A + 2E
A(£,£,0) A A A A 4A 6A
Z (£,0,0) 2A 3A 6A
Q (¢.£Y2) A A
R (£,0,Y2) E
S (V2 — £,2¢,%2) A A
T (V2 — £,2£,0) A A A A 4A 6A
U (¥2,0,8) A 2A 6A
(£5.0) A A A 4A 6A
(0.0 2A

two X, RUMs along [1,0,0] are the transverse acoustic
mode polarized along [0,0,1] and an optic mode with part
of the second transverse acoustic mode (i.e., the x-y shear
mode) mixed in. It is this mixed mode that becomes the
I's RUM at k = 0 and is involved in the incommensurate
instability. The mechanism proposed by Vallade and co-
workers (Berge et al. 1986; Vallade et al. 1992) involves
an almost uniform softening of the mixed X, RUM for
all wave vectors along the branch. Atk # 0 the £, RUM
has the same symmetry as the pure transverse acoustic
mode (the x-y shear mode). Because the RUM and the
acoustic mode have the same symmetry they can interact,
their eigenvectors mix, the frequency of the optic mode
increases, and the frequency of the acoustic mode de-
creases. The effect on the mode frequencies is strongest
for the wave vectors where the two modes have similar
frequencies. Because the acoustic mode and the optic
RUM have different symmetry at k = 0, the interaction
vanishes at this point and varies with k as k2. The result
is that as the =, optic RUM softens on cooling, it mixes
with the acoustic mode and drives it soft at an incom-
mensurate wave vector. The important point is that the
incommensurate instability arises as a natural conse-
quence of the existence of a line of RUMs. The interac-
tion of a soft optic mode with an acoustic mode that
varies as k? is reasonably common, but in most cases the
optic mode softens only at a single wave vector, k = 0,
for example. Then, the interaction with the acoustic mode
is not strong enough to lead to an incommensurate insta-
bility. In the case of quartz the existence of a line of
RUMs leads automatically to the possibility of the in-
commensurate instability. This was documented in detail
by Berge et al. (1986) and Vallade et al. (1992). This
model has been tested by a molecular dynamics simula-
tion study of the collective dynamics of the 8 phase of
quartz (Tautz et al. 1991). By comparing the eigenvectors
of the soft optic branch with the RUM eigenvectors it
was found that the two matched to within 80%.

The comparison of the RUM results for the « and 8
phases of quartz shows that some of the modes are RUMs

only in the higher symmetry 8 phase. This follows an
empirical rule discussed by Giddy et al. (1993) that RUMs
do not always commute, that is, when a structure is mod-
ulated by the imposition of one RUM, the subsequent
loss of symmetry breaks some of the degeneracies of the
constraints and causes some of the modes to cease being
RUMs. This is because finite rotations (of the tetrahedra)
do not simply add. From an experimental viewpoint the
most interesting example of this is an M, mode. In the «
phase this mode is observed to soften significantly on
heating to the phase-transition temperature (Boysen et al.
1980). From Table 1 it is seen that this mode is a RUM
in the 8 phase but not in the « phase (there are two M,
modes in Table 1, the other of which remains a RUM in
the « phase and was found experimentally not to vary
strongly with temperature). Therefore, it has a moderate-
ly high frequency at low temperature in the « phase but
softens as the temperature approaches the -3 phase tran-
sition where it becomes a RUM. We calculated the fre-
quencies of all modes that are RUMs only in the 8 phase
for different values of the order parameter Q using the
rigid-unit mode program CRUSH. For all modes on spe-
cial points and lines the frequency varies as w? « (2,
whereas for the modes with wave vectors on a plane of
symmetry «? o *. Where w? = «(Q?, the specific coeffi-
cients for the modes were placed on an absolute scale by
using an appropriate value for the split-atom force con-
stant and assuming that Q = 1 corresponds to the value
at 7 = 0 (as given by our own neutron diffraction mea-
surements, unpublished data), and these are given in Ta-
ble 2. Aside from the soft mode at I', the most sensitive
modes are the M, and A modes. The large shift in the
frequency of the M, mode was determined by the inelas-
tic neutron-scattering measurements of Boysen et al.
(1980). From their data we estimated that experimentally
the frequency of the M, mode (in THz?) varies as w?
1202 The coeflicient is in reasonable agreement with the
value given in Table 2, particularly taking account of the
gross approximations inherent in the split-atom calcula-
tions.
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TaeLe 2. Coefficients in the equation «? = aQ? for the
frequencies of modes that are RUMs in §-quartz but

that have nonzero frequency in the « phase

Mode a

16.6
1.4
0.4
9.4

10.4
9.2

cZErMbH

Note: The unit for frequencies is THz, and Q is defined to equal 1 at
K.

The origin of the a-8 phase transition in quartz

With many RUMs at different special points in the
Brillouin zone, we must ask what factors determine which
RUM will act as the soft mode to generate a new low-
temperature phase. In theory there may not be a general
answer to this question because phase transitions usually
arise from a delicate balancing of different forces, and in
a general case it might simply be that a given transition
occurs when the balance tips a certain way. However, in
the case of quartz the RUM model may give a more
specific answer to this question.

The first thing to note is that there is always a force
that acts to reduce the volume of the structure. The most
obvious candidate force arises from the dispersive inter-
actions between the highly polarizable O anions. If the
lowest order interaction between two O atoms varies with
the separation r as —Ar—¢, where A is a constant, the
integration of this interaction over the whole crystal fol-
lows as

47pA
3r3

-f Ar=¢ X dxpridr = —
4]

where p is the density of O atoms, and 7, is a lower cut-
off. This energy is more negative for higher densities and
therefore favors configurations with lower volumes. Be-
cause the 8 phase of quartz is fully expanded, any distor-
tion to lower symmetry leads to a reduction in volume.
The dispersive interaction is therefore a positive driving
force for any of the potential RUM distortions. It is there-
fore likely that the RUM distortions that produce the
largest volume changes are preferred over the other RUM
distortions. We show elsewhere (Dove et al., in prepara-
tion) using lattice-energy calculations that the driving force
from the dispersive interactions is certainly strong enough
to account for the phase transition in quartz. The Cou-
lomb interactions have been found to be much less sig-
nificant in this respect.

In addition to the volume change acting as a general
driving force for a phase transition, we also need to take
account of local interactions. Apart from short-range ster-
ic forces, which eventually limit the extent to which the
structure can distort to lower the volume, there is an en-
ergy associated with the distortion of the Si-O-Si bond.
In systems such as cristobalite the relaxation of the crystal
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B-cristobalite cristobalite-11

o-cristobalite

Ficure 2. The three phases of cristobalite viewed down a
common direction, [110] in the 8 phase and [010] in the « phase
and the high-pressure phase II. The data for the structure of
phase II were kindly provided by Larry Finger (1993, personal
communication). The outlines of the unit cells are marked in the
latter two cases.

to produce bond angles in the ideal range 145-150° pro-
vides a driving force for the phase transition. On the oth-
er hand, in g-quartz the Si-O-Si bond is already in this
range, and any RUM distortion that changes this angle
substantially raises the energy. The way each RUM dis-
torts or preserves the equilibrium Si-O-Si bond angle can
be modeled by the torsional interaction. When this in-
teraction is nonzero only the torsional RUMs retain their
zero frequency. In $-quartz the only RUMs that have
zero frequency with a nonzero torsional interaction are
A modes at the T, A, and M points. The RUM with zero
frequency at T is the T RUM that acts as the soft mode
for the a-3 phase transition. The torsional interaction,
therefore, selects a few RUMs from the complete set that
might act as soft modes for displacive phase transitions.
Although it is known that there is a systematic change in
the Si-O-Si angle on cooling below the phase transition,
the point is that this change is quadratic in the rotations
of the tetrahedra rather than linear, as demonstrated by
lattice calculations with rigid tetrahedra (unpublished
data).

CRISTOBALITE
The a-8 phase transition in cristobalite

Cristobalite is another polymorph of silica containing
corner-sharing SiO, tetrahedra. At atmospheric pressure
it is stable only at temperatures above 1840 K, but it can
be easily supercooled without reversion to quartz or trid-
ymite. The high-temperature 8 phase has an idealized
cubic structure of space group Fd3m. At approximately
530 K (dependent on the sample quality) it undergoes a
first-order phase transition to the tetragonal « phase with
space group P4,2,2 (Schmahl et al. 1992). The transition
is consistent with an unstable mode at the wave vector
(1,0,0), the X point, and the symmetry change is consis-
tent with this mode having symmetry X, (Hatch and
Ghose 1991). The structures of the « and 8 phases are
shown in Figure 2 as viewed from a common direction
to illustrate the rotations and translations of the tetra-
hedra.

The o-B transition in cristobalite has recently been
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studied in some detail using a variety of approaches. Hatch
and Ghose (1991) presented the group theoretical basis
for our understanding of this phase transition. Schmahl
et al. (1992) presented new crystallographic data, which
when merged with previous data led to the construction
of the Landau free-energy function. Spearing et al. (1992)
and Phillips et al. (1993) studied the phase transition with
the use of nuclear magnetic resonance techniques. Swain-
son et al. (1996) studied the transition with the use of
infrared and Raman spectroscopy. Swainson and Dove
(1993a, 1995a) also reported molecular dynamics calcu-
lations and inelastic neutron-scattering results, which point
to the existence of many low-frequency modes in the 8
phase. These modes were found to disappear on cooling
into the « phase. Hua et al. (1988; see also Welberry et
al. 1989 and Withers et al. 1989) reported the observation
of strong diffuse electron scattering in the (110) zones of
the 8 phase, which disappears in the low-temperature
phase. Strong diffuse scattering has also been found in
neutron powder diffraction results for the 8 phase
(Schmahl et al. 1992), reminiscent of the diffuse scatter-
ing observed from orientationally disordered crystals
(Dolling et al. 1979). Withers et al. (1989) suggested that
the diffuse scattering at the X point can be explained in
terms of coupled rotations of rigid tetrahedra in planes
perpendicular to the (110) directions, that is, in effect, in
terms of RUMs.

Despite all the work that has been conducted on cris-
tobalite, there remains a fundamental controversy con-
cerning the nature of the high-temperature 8 phase. Some
authors, including Hatch and Ghose (1991), have pro-
posed that the 8 phase consists of domains of the « phase
with random orientations, so that the symmetry of the 8
phase is recovered as the macroscopic average over all
domain orientations. A related model was proposed by
Wright and Leadbetter (1975), but in this case the 3 phase
is composed of domains of a different symmetry (I42d),
and again the macroscopic symmetry of the 8 phase fol-
lows from the average over all domains. Although these
models attract support from some authors (e.g., Spearing
et al. 1992), the NMR data of Phillips et al. (1993), the
spectroscopic data of Swainson et al. (1996), and the mo-
lecular dynamics simulations and inelastic neutron-scat-
tering data (Swainson and Dove 1993a, 1995a) tend to
support the opposite view that the 8 phase does not con-
tain recognizable domains of any other structure. Because
the idealized structure of the 8 phase is chemically im-
plausible as a static structure—the Si-O bond lengths are
significantly shorter than typically found in silicates, and
the Si-O-Si bond is linear—it is clear that there must be
a substantial amount of orientational disorder of the SiO,
tetrahedra in the 8 phase. The controversy concerning the
structure of the 8 phase, therefore, revolves around the
issue of the scale of the correlations associated with the
orientational disorder, in both space and time. In the do-
main models these correlations are long ranged, with a
long lifetime (at least relative to phonon periods), where-
as the interpretation of the NMR and spectroscopic data
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suggests that the correlations are both short ranged and
of a short lifetime.

The 8 phase of cristobalite also undergoes a first-order
phase transition on increasing pressure at ambient tem-
peratures. The high-pressure phase, which Palmer and
Finger (1994) labeled phase II, is monoclinic with space
group P2,. From the tables of Stokes and Hatch (1988)
it is seen that the symmetry of phase II can be derived
from that of the « phase by a distortion of wave vector
(*2,0,%2). The phase transition is allowed to be second or-
der, but on increasing pressure it is found to be strongly
first order.

RUMs in the three phases of cristobalite

The RUM analysis of the two low-pressure phases of
cristobalite is given in Tables 3 and 4. For the 8 phase
we used the ideal structure in our calculations, although
we noted above that this is chemically implausible as a
static structure, the ideal structure represents the point
from which the disordered phase is derived.

The RUM spectrum of the 8 phase of cristobalite (Dove
et al. 1991; Swainson and Dove 1993a) is easily described
as having one RUM for each wave vector in each of the
(110) zones, that is, there are six whole planes of RUMs
in reciprocal space. These planes of RUMs are clearly
seen in the lattice-dynamics calculations of Dove et al.
(1991, 1992). Two planes intersect at the X point, and
the two corresponding RUMs form the doubly degener-
ate X, mode, which is the soft mode for the a-8 phase
transition (Hatch and Ghose 1991). Thus, as with the a-38
phase transition in quartz, the RUM analysis yielded the
soft mode for the phase transition, at least to the extent
to which the instability in cristobalite is driven by a soft
mode (this point was discussed by Swainson et al. (1996),
who reported the existence of well-defined soft modes in
the « phase).

The RUMs in the 8 phase of cristobalite received ex-
perimental confirmation from two studies. First, these
RUMs have been observed as strong streaks of diffuse
scattering in electron diffraction measurements. Measure-
ments performed in different zones, and by tilting the
sample to observe out-of-plane scattering, have con-
firmed all details of the results given in Table 3. In the
classical limit, the intensity of diffuse scattering from a
phonon scales as w2, where w is the angular frequency
of the phonon (Dove 1993). Thus, the most intense fea-
tures of diffuse scattering come from low-frequency pho-
nons, and because RUMs are expected to be the lowest
frequency modes in a structure it should be possible to
relate the diffuse scattering to the RUM spectrum. In-
deed, as we have noted, all the streaks of diffuse scattering
in B-cristobalite can be accounted for as single-phonon
scattering from RUMs. The streaks themselves are rela-
tively narrow in wave vector and appear to be no wider
than the resolution of the measurements. We comment
on this below. Second, the many low-frequency modes in
B-cristobalite have been observed in a measurement of
the phonon density of states (Swainson and Dove 1993a,
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TasLeE 3. Rigid-unit modes for the cubic structures

B-cristo-

balite  Sodalite Sodalite Sodalite Leucite

Fd3m  Im3m  /43m P43n la3d
T'(0,0,0) T A+T T 2A+T
L (12,Y2,Y2) A+E
X (0,1,0) E
H (0,0,1) T T
N (¥2,%2,0) 3A 2A 2E
P (Y2,%2,%2) 3A A+E
X (0,0,%) F
M (¥2,%,0) 2E
R (Y2,%2,%2) E+F
A (£,0,0) E A+E E 2E
A(EEL) A+E A A
Z(££,0) A A+E A 4A
S(&t1) A
R (£,0,%2)
D (V2,Y2,8) 2A 2A 2E
F{E1 - £8) A A
G(1-£0) 2A A
(E£5) A A
(£.5.0) 2A
(LN A

1995a), where a striking difference was noted between the
a and B phases (see below). These density-of-states mea-
surements were consistent with the prediction from mo-
lecular dynamics simulation (Swainson and Dove 1995a).
Comparison of the inelastic neutron-scattering experi-
ments on the 8 and « phases of cristobalite gives the
energy scale for the RUMs of about 0-1 THz. This is
consistent with inelastic neutron-scattering results for
leucite (Boysen 1990), which are discussed later.

The comparison of the RUM spectrum of the a phase
of cristobalite with that of the 8 phase is striking. Virtu-
ally the only RUMs that remain in the o phase lie in the
[110] direction, and there are no longer whole planes of
RUMs. Not included in the table is the existence of a
curved line of RUMs. The difference between the number
of RUMs in the two phases was clearly seen in the mea-
surements of the phonon density of states by inelastic
neutron scattering (Swainson and Dove 1993a). The re-
sults confirmed that there are many fewer low-frequency
modes in the « phase. Moreover, the electron diffraction
results also show the sudden changes in the RUM spec-
trum on cooling below the transition temperature (Hua
et al. 1988).

Finally, our analysis of cristobalite II shows that it has
no RUMs for any of the symmetry points or directions
in the Brillouin zone. The crystal structure has not yet
been reported, but preliminary details were given to us
by Larry Finger (1993, personal communication). Our
CRUSH calculations were performed on a structure that
was idealized to have perfect tetrahedra, which is shown
in Figure 2.

RUMs and the nature of the 8 phase of cristobalite

So far we have seen how RUMs can provide the insta-
bilities associated with phase transitions. In the case of
cristobalite they are also essential in determining the na-
ture of the high-temperature phase. As noted above, the
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TaBLE 4. Rigid-unit modes for the tetragonal and
orthorhombic structures

a-cristobalite Leucite Cordierite
P4.2,2 14,/acd Ccem

I (0,0,0) A 3A 6A
M (2,2,0) E
X (V2,%2,0) 2E
Y (1,0,0) 6A
Z(0,0,%2) 3E
S (2,%2,0) 6A
T(1,0,%) E
R (Y2,'2,%2) 2A
Z(££0) 2A
A(EE0) 4A
2(£,0,0) 6A
A(0,0,) 6A
H(1,0,8) 2A
F(1,£0) 6A
(££.0) : 6A

evidence from experiments (Schmabhl et al. 1992; Swain-
son and Dove 1993a, 1995a; Swainson et al. 1996) and
simulations (Swainson and Dove 1993a, 1995a) indicates
a high degree of disorder in the 8 phase. The Si-O bonds
rotate away from the (111) directions, so the Si-O-Si bond
angles are approximately 140-150° (Swainson and Dove
1995b). If the tetrahedra are to remain rigid, they must
rotate by about 15-20°. If the RUMSs were restricted only
to lines of wave vectors in reciprocal space this would
not be easily accomplished. However, in 8-cristobalite
there are planes of RUMSs, and the disorder can be
achieved as a superposition of all RUMs.

We illustrate this by showing how the two domain
models of B-cristobalite, from Hatch and Ghose (1991)
and Wright and Leadbetter (1975), can be explained in
terms of RUMSs. The model of Hatch and Ghose (1991)
supposes the existence of slowly fluctuating domains of
the « phase. We consider one such domain with the te-
tragonal axis along [0,0,1], say, as a local wave packet
made by superposing phonon modes near the X point in
reciprocal space, (0,0,1), using, of course, the phonon
bands that run into the X, mode at X. If the domain has
a platelet shape, it will involve phonon modes predomi-
nantly along and very near the RUM line k = (0,0,k,)
near (0,0,1). If, on the other hand, it has a rod shape along
[1,1,0] or [1,1,0] it will consist predominantly of modes
in the (1,1,0) or (1,1,0) RUM planes. Either way the
structure can be generated as a patchwork of wave pack-
ets of the three 2X, modes slowly fluctuating in time and
space. Because everywhere the tetrahedra are locally ro-
tated, there is a volume reduction analogous to that in
Figure 1. The analysis can be carried two steps further.
Because there is a tetragonal strain involved in the local
region of the o« domain, there is something like a domain
boundary between, say, a region of 3z2 — r? strain and
one with 3x2 — r2 strain. The theory of coherent domain
packets (Sapriel 1975) shows that the strain energy is
minimized if the boundaries lie perpendicular to the
[1,£1,0] axes. Thus, we predict that the domains are
platelets perpendicular to these directions and not rod
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shaped. The second point is that the relevant RUMs ex-
tend over the whole of the (1,+1,0) planes, so there would
appear to be no energy gain by making large coherent
domains involving only the RUMs near X. We therefore
predict for entropy reasons that the domains are very
small, almost at the level of a unit cell. The model of
Wright and Leadbetter (1975) proposes that the 8 phase
is composed of domains of cubic 1424 symmetry, caused
by condensation of the I's (T,,) RUM. Considerations
similar to those outlined for the X, domains also apply
in this case. However, the important point concerning
both models is that the X, and I's RUMs lie in the same
planes of RUMS in reciprocal space (Swainson and Dove
1993b). Therefore, because either type of domain forms
from wave packets of RUMs along the line from I' to X,
the wave packet that forms the X, domain automatically
includes some of the 'y RUM, and vice versa. So there
is no incompatibility between the two domain models,
and indeed both are part of a larger model that allows
domains formed from wave packets centered on any wave
vector in the RUM planes, with domain sizes that can be
as small as one unit cell and with low-energy domain
walls. Exactly how the energy is partitioned between dif-
ferent types of domains is an experimental question.
Our picture of the 8 phase of cristobalite being disor-
dered as a result of the action of many RUMs suggests
that the phonons are strongly anharmonic. This would
mean that if the diffuse scattering from a RUM could be
analyzed in terms of its energy dependence (the sort of
thing that is routinely done in an inelastic neutron-scat-
tering experiment), the RUM phonon would not appear
as a peak of single frequency but as a damped mode with
a spread of frequencies. This damping could be no more
than a broadening of the phonon peak (underdamping),
or it could lead to the peak being completely replaced by
a broad distribution of energies that encompasses both
zero energy and the nominal harmonic energy of the pho-
non (overdamping). The latter situation is quite typical
where there is strong orientational disorder of molecules
or molecular units, as, for example, in SF, (Dove et al.
1986). The interesting point with respect to the diffuse
electron scattering is that a shift in the energy distribution
to lower frequencies leads to an increase in the intensity
of scattering following the w2 scattering law (Dove 1993).
This may explain why the streaks of diffuse scattering are
so strong in the electron diffraction images. It may also
help to explain why the streaks are so narrow in wave
vector. Consider a point in reciprocal space on one of the
streaks of diffuse scattering, and denote q as a vector nor-
mal to that point. The frequency of the phonon surface
that contains both the RUM at our point on the streak
and the phonon at q varies as w?(q) = wiym + @|q]3,
where wgyy 18 the harmonic frequency of the RUM at our
point on the streak. We showed elsewhere that the coef-
ficient o is related to the stiffness of the tetrahedron (Dove
et al. 1992). In principle the width of the streak of diffuse
scattering should give direct information about the mag-
nitude of «. However, from our knowledge of the likely
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sizes of both wgyy and « it seems that the streaks of dif-
fuse scattering are narrower than one would expect. This
is possible if the RUM is heavily damped (or over-
damped), with the distribution of energies being lowered
by the damping. This point is illustrated in Figure 3. The
damping is confined to the wave vectors close to the RUM
planes, leading to an enhancement of the intensity of the
diffuse scattering from the RUMs relative to that from
phonons on the same branch.

The high-pressure o-II phase transition in cristobalite

We noted above that the «-II phase transition in cris-
tobalite can arise as a result of a soft-mode distortion
involving a phonon in the « phase with wave vector
(%2,0,%:). However, no RUM occurs in the « phase at this
wave vector (Table 4). This might imply that the «-II
phase transition does not involve RUM distortion. How-
ever, it is possible to generate the structure of phase II
with perfect SiO, tetrahedra, which implies that a RUM
distortion of some kind must be involved in the phase
transition. Phase II can be derived from the 3 phase by
a distortion with wave vector (%2,%,%), and a RUM with
this wave vector in the 8 phase lies on the planes listed
in Table 3. Thus, we propose that phase II is not directly
obtained from the o phase but instead is a distortion of
the 8 phase, and that it is, indeed, one of the possible
ordered structures that can be generated from the 8 phase.
When cristobalite, therefore, transforms from the « phase
to phase II, it must overcome a free-energy (potential
energy) barrier, which is why the transition is first-order.
To some extent this idea is counterintuitive if we com-
pare this behavior with what happens on changing tem-
perature at ambient pressure, certainly in the sense of the
formalism of a Landau free-energy function in which only
one coefficient is allowed to be temperature dependent.
Although this behavior is expected when the Landau free-
energy function is obtained from renormalized phonon
theory (Dove et al. 1992; Dove 1993), there are no grounds
at all for assuming that any of the coefficients are inde-
pendent of pressure. Indeed, it is to be expected that all
the coefficients are strongly affected by pressure, and it
would not be surprising if the minimum of the free energy
could shift from one distortion of the 8 phase to another
on changing pressure. We postulate that this happens at
the o-II phase transition in cristobalite, in which case the
8 phase is the parent structure of both the « and II phases,
rather than the o phase acting as a parent phase for phase
II. The comparison of the structures of the three phases
in Figure 2 suggests a close relationship between the «
phase and phase II, which arises because they are both
derived from the 8 phase by the same RUM phonon
branch. The difference is in the wave vector of the dis-
tortion, not in the mode of deformation.

RUMs, entropy, and reconstructive phase
transitions in silica

To conclude our analysis of cristobalite, we compare
the results for cristobalite with those of quartz to make a
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Ficure 3. Diagram showing the spread of frequencies in
cristobalite. For a wave vector for which the mode is not a RUM,
the vibrations are harmonic and there is a tiny spread of fre-
quencies. Close to the wave vector where the mode is a RUM,
the mode is damped with a wider spread of frequencies, as marked
by the vertical arrow, and the average frequency is lowered.
Hence, the average value of w2, which determines the intensity
of one-phonon scattering, is enhanced by the damping at the
RUM wave vector.

qualitative point about the relative stabilities of quartz
and cristobalite as a function of temperature. The energy
of quartz must be lower than that of cristobalite because
quartz is the stable phase of SiO, at low temperatures.
For the reconstructive phase transition quartz-cristobal-
ite to occur, the entropy must be greater in cristobalite
than in quartz. The transition temperature at ambient
pressures is high enough that we need to consider only
the high-symmetry phases of both polymorphs. The rig-
id-unit modes as low-frequency modes carry a significant
component of the entropy. In quartz there is a single plane
of RUMs in reciprocal space, whereas in cristobalite there
are six planes. Although the RUMs are strictly limited to
these planes, the phonon branches that contain the RUMs
have low frequencies in the vicinities of the RUM planes
and therefore also contribute to the high phonon entropy.
Thus, we can consider the RUM planes to have a finite
effective thickness in reciprocal space, so that we can
quantify the entropy contribution from the planes of
RUMs by defining the ratio of the number of RUM planes
to the number of tetrahedra in the unit cell. This ratio is
1, for quartz and ¢ = 3 for cristobalite. This simple com-
parison of the number of RUMs in both structures pro-
vides a mechanism (or at least part of the mechanism)
for the entropy difference that allows the reconstructive
phase transition to occur. We will see immediately below
that a third polymorph of SiQ,, tridymite, has one planc
of RUMs with one RUM and three planes of doubly de-
generate RUMs. Because there are four tetrahedra in the
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T3 distortion

Ideal structure

T distertion
(kalsilite)

Ficure 4. Structure of the ideal phase of tridymite (left), the
derivative formed by condensation of the It RUM (center), which
is equivalent to the highest symmetry kalsilite structure, and the
derivative formed by condensation of the I'y RUM (right) lead-
ing to a structure with D rings. Each structure is viewed down
the common [001] direction. The outlines of the unit cells are
marked in each case.

unit cell, the ratio of the number of RUM planes to the
number of tetrahedra is 74, which is intermediate between
quartz and cristobalite and consistent with the occurrence
of tridymite between quartz and cristobalite in the SiO,
phase diagram.

TRIDYMITE AND THE KALSILITE-NEPHELINE
SOLID SOLUTION

The structure of tridymite and related materials

Tridymite is a third polymorph of silica and is stable
between about 1030 and 1740 K. Its structure consists of
sheets of corner-linked tetrahedra stacked perpendicular
to the c axis, with the structure repeated every other layer.
A single layer is shown in Figure 4. Although this struc-
tural arrangement is generally known, it is useful to com-
pare it with cristobalite. The same sheets are found as
(111) planes in cristobalite, but the stacking is different
and repeats every third layer. The tridymite framework
is the parent of a wide family of “‘stuffed” derivatives
such as nepheline (Na;KALSi,O,) and kalsilite (KAI-
Si0,).

RUMs in the ideal tridymite structure

The results of the RUM analysis of the ideal high-tem-
perature tridymite framework, space group P6,/mmc, are
given in Table 1. As in 8-cristobalite there are planes of
RUMs in reciprocal space, although the RUM planes in
tridymite are not all related to the RUM planes in cris-
tobalite. There are more RUMSs for the special wave vec-
tors than in either quartz or cristobalite, which is due only
in part to the fact there are more rigid units per unit cell
and hence more phonon branches. The large number of
RUMs in part accounts for the fact that tridymite is the
parent to such a rich variety of daughter structures with
varying compositions. The tridymite structure can adjust
its geometry easily when cations of different sizes are in-
troduced into its structure.

The results of the RUM analysis for high-tridymite giv-
en in Table 1 have been confirmed by recent electron
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Ficure 5. Crystal structure of nepheline viewed down the
[001] direction. By comparison with Figure 4 it can be seen that
the nepheline framework can be derived from the ideal tridymite
framework by condensation of a zone-boundary RUM. The small
spheres represent Na atoms and the large spheres represent K
atoms. The structure has selected the RUM distortion that best
holds the cations of two sizes. The outline of the unit cell is
marked.

diffraction experiments (Withers et al. 1994). The RUMs
appear as narrow streaks of diffuse scattering in the elec-
tron diffraction photographs, exactly as for g-cristobalite.
We demonstrated elsewhere (Dove et al. 1996b) that these
streaks can be explained by the calculated RUM spec-
trum given in Table 1. Because the same linear Si-O-Si
bonds in the idealized tridymite structure are in the ide-
alized structure of 8-cristobalite, the same arguments de-
veloped for the disordered nature of the structure and the
damping of the RUMs of 3-cristobalite also apply directly
to high-tridymite. The diffuse scattering seen by electron
diffraction also shows a curved surface of diffuse scatter-
ing (Withers et al. 1994) that is not indicated by the re-
sults of Table 1. This also can be explained with the RUM
model (Dove et al. 1996b). We were able to calculate an
identical curved surface of RUMs that passes through
points of special symmetry but which itself was not de-
fined by symmetry. This is a significant point. In most
cases surfaces of RUMs are planes of special wave vec-
tors. Indeed, prior to these calculations we had antici-
pated that, because the number of RUMs is small in com-
parison with the total number of phonon modes, the
RUMs would be restricted to special wave vectors as a
general principle. Instead, there is nothing special about
the wave vectors on the calculated curved surface in trid-
ymite, which indicates that these sorts of features may be
quite common. Indeed, we found other examples of gen-
eral RUM surfaces, which are reported elsewhere.
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RUM distortions of the ideal tridymite structure

The distortion of the high-temperature tridymite
framework upon decreasing temperature is not well un-
derstood. Many different structures and space groups have
been observed, as detailed in the reviews of Merlino (1984)
and Wennemer and Thompson (1984). It is likely that
many of the observed distortions of the high-temperature
framework can be understood in terms of RUMs. For
example, consider the structures produced from high-
tridymite by the condensation of the two nondegenerate
RUMs (labeled A in Table 1) at the zone center. Figure
4 shows a structure with a symmetry of P6,22 produced
by the condensation of the RUM of symmetry I't (A,,).
This framework is observed in kalsilite (Merlino 1984
Andou and Kawahara 1984). Figure 4 also shows the dis-
tortion produced by the RUM of symmetry 5 (B,,): This
is the distortion to D rings discussed by Wennemer and
Thompson (1984). The two doubly degenerate RUMs at
I’ have symmetry 2Ty and T¢ (E,, and E,,). The actual
distortions resulting from the condensation of these modes
are in general a linear combination of their two compo-
nents. Both of these doubly degenerate modes can pro-
duce daughter structures with orthorhombic symmetry
(€222, and Cmc2, are both possible space groups) as
observed in tridymite derivatives (Dollase 1967; Kihara
1978; Capobianco and Carpenter 1989). On the other
hand, these modes can also lead to lower symmetry struc-
tures, as listed by Stokes and Hatch (1988). Some of these
lower-symmetry structures have been reported in the lit-
erature (e.g., Kihara 1978).

The kalsilite-nepheline solid solution

In the kalsilite-nepheline solid solution there is a new
role for RUMs, that of providing the mechanism for stat-
ic distortions of the ideal parent structure to facilitate
Na+*-K+ cation ordering. This role has importance in the
discussion below on sodalite and zeolites. Cations like to
be surrounded by O anions. Moreover, the O anions like
to be at a specific radius as given by the ionic radii. It
would be energetically unfavorable to bring about such a
situation through significant distortion of the SiO, and
AlQ, tetrahedra.

This is illustrated most simply by the kalsilite struc-
ture, which is shown as one of the distorted tridymite
structures in Figure 4. To reduce the K-O distance the
tetrahedra rotate about [001]. The distortion required to
achieve this is the Ty RUM given in Table 1. The neph-
eline structure, which must accommodate both Na+ and
K+ cations with a 3:1 ratio, is necessarily more compli-
cated. This is shown in Figure 5. There is a particular
RUM, the My mode in Table 1, that can generate the
ordered nepheline structure from the ideal tridymite
structure. This RUM distortion brings about the required
O displacements, leaving a large hexagonal hole for the
K+ cations and squeezed elongated holes for the Na+
cations. The Na-O distance is self-regulating: The RUM
displacement pattern can have any amplitude and adjusts
itself to bring the Na-O separation to its optimum value.
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Intermediate between the kalsilite and nepheline end-
members are two other phases, trikalsilite and tetrakal-
silite (see, for example, Putnis 1992). These have the larg-
er supercells of the underlying tridymite structure and
incorporate deformations of individual six-membered
rings that are similar to those found in both kalsilite and
nepheline.

RUMs in kalsilite and nepheline

As noted, the structures of kalsilite and nepheline are
produced by deformation of the ideal tridymite structure.
The RUM spectra of these two structures are given in
Table 1. There are fewer RUMs in these two phases than
in the ideal tridymite structure. The structure of kalsilite
still has ideal Si-O-Si bond angles of 180°, and we there-
fore expect again to find a disordered structure obtained
by the operations of the complete set of RUMs. Both
kalsilite and nepheline undergo displacive phase transi-
tions on cooling from high temperatures, but the details
are complicated and not unambiguous, and a complete
RUM description takes us beyond the scope of the pres-
ent article.

FELDSPAR
The feldspar family of structures

The feldspar family is a large and important group of
minerals displaying very diverse and complex subsolidus
behaviors. The feldspars with the highest observed sym-
metry are potassium feldspar (high-sanidine), high-tem-
perature sodium feldspar (monalbite), and rubidium feld-
spar. These are all monoclinic with space group C2/m.
The framework topology without interstitial cations is
shown in Figure 6. The topology is based on connected
four-membered rings of tetrahedra. In Figure 6 the ide-
alized individual rings, before being joined to other rings,
have point symmetry 42m (D,,), and as a result the unit-
cell angle 8 has the ideal value of 120°. However, the
four-membered rings can distort without requiring any
change of the space group symmetry of the structure, as
in the sanidine structure (also shown in Fig. 6). The in-
dividual four-membered rings of tetrahedra now have
point symmetry 2 (C,), and the unit-cell angle 8 has a
value lower than 120°. Megaw (1973) noted that these
distortions of the rings can occur without any distortions
of the tetrahedra; the tetrahedra simply rotate. We show
below that this distortion in sanidine is given by a RUM
with T, (or A,,) symmetry.

Feldspars undergo several phase transitions as a func-
tion of temperature, pressure, and chemical composition
(Carpenter 1988; Salje 1990; Putnis 1992). The alkali
feldspars of composition RAISi,O;, where R is a mono-
valent alkali cation such as Na+, K+, or Rb*, undergo
two coupled transitions, which both act to change the
symmetry from monoclinic C2/m to triclinic CT (Salje
1985). In albite, NaAlSi;O,, the first transition that oc-
curs on cooling is a displacive transition, and the sym-
metry change is consistent with the transition being a
proper ferroelastic transition driven by a soft acoustic
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Distorted structure
B <120°

Distorted structure
B =120°

Ideal structure

FiGuRE 6. Three structures of feldspar with space group C2/m.
The ideal structure (left) has the tetrahedra aligned to give rings
of perfect fourfold symmetry and 8 = 120°. The intermediate
structure (center) has rotated tetrahedra as a result of the con-
densation of the T', but still has 8 = 120°. The sanidine structure
(right) is derived from the intermediate structure by a simple
shear that does not change the symmetry. The outlines of the
unit cells are marked in each case.

mode. The second transition that occurs on further cool-
ing involves Al-Si ordering. The transition temperature
for Al-Si ordering does not change drastically on substi-
tution of Na+ by K+ (Carpenter 1988). On the other hand,
the transition temperature for the displacive phase tran-
sition decreases rapidly with increasing K+ content, and
for K+ contents larger than about 25% the Al-Si—ordering
transition occurs at higher temperatures than the displa-
cive phase transition (Carpenter 1988).

With feldspars of composition MAIL,Si,0Q,, where M
is a divalent cation such as Ca2+, Sr2+, or Ba?*, the Al-
Si-ordering phase transitions are expected to occur at
temperatures that are far higher than the melting tem-
peratures. The Sr2+ and Ba?+ feldspars have the highest
observed symmetry for this group: I2/c. There are two
displacive transitions, which sequentially lead to the space
groups IT (McGuinn and Redfern 1994a, 1994b) and P1
(Redfern and Salje 1987, 1992; Redfern et al. 1988). The
symmetry change 12/c to I1 is, as for the alkali feldspars,
consistent with a proper ferroelastic instability. This is
the phase-transition pathway followed by the Sr2* and
(possibly) Ba2* members of this sequence. Calcium feld-
spar, CaAl,Si,O; (anorthite), is never observed in the I2/¢
structure; the I2/¢-I1 transition is above the melting point
(Carpenter 1988). The second displacive phase transition
of IT-P1 is a zone-boundary transition (the unit cell dou-
bles in size) and is observed only in anorthite and Ca-
rich feldspars at relatively low pressures and tempera-
tures (Redfern and Salje 1987, 1992; Redfern et al. 1988).

RUMs in the ideal and high-sanidine C2/m structures

The RUM analysis for both the ideal (3 = 120°) and
real high-sanidine (8 #120°) structures is given in Table
5. The first point to note is that the ideal structure pos-
sesses more RUMs than high-sanidine, showing that the
precise geometry can have a significant effect. For ex-
ample, there are planes of RUMs in the ideal structure
that are not found in the sanidine structure. The second
point to note is the existence of a ', optic RUM at the
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TasLe 5. Rigid-unit modes for the feldspar structures

Ideal Sanidine
C2/m c2/m
T(0,0,0) A
Y (0,1,0) 2A A
A (0,0,%2) A A
M (0,1,12) A A
L (V2,%2,%2) 2A
V (V2,%2,0) 2A
A(0.£0) 2A A
U (0,£,72) A A
(£50) 2A
(£5%2) A
(Slovn A A

zone center. This mode is totally symmetric in that its
eigenvector does not destroy any of the space group sym-
metry elements. The eigenvector of this mode can be im-
posed onto the ideal structure to give a new structure that
is also monoclinic with 8 = 120° but somewhat deformed,
as shown in Figure 6. This new structure is intermediate
between the ideal structure and high-sanidine. Calcula-
tions showed that the intermediate structure has the same
RUM spectrum as high-sanidine. The observed sanidine
structure, with lattice parameter 8 = 116°, can be derived
from the intermediate structure by an appropriate shear
strain. This shear is again totally symmetric and is given
by the transverse acoustic RUMs with wave vectors and
polarization in the a*-c* plane.

The C2/m-C1 ferroelastic phase transition in albite

The monoclinic-triclinic displacive instability that pro-
duces a phase transition in albite at ~1250 K generates
no change in the size of the unit cell, which implies that
the instability occurs at k = 0. The point-symmetry
change, 2/m — T, is consistent with a ferroelastic insta-
bility but also allows an optical instability of the same
symmetry. In this latter case, the optic instability couples
linearly with the appropriate strain, leading to a shear of
the unit cell that varies linearly with the order parameter.
If the phase transition is a true ferroelastic transition, the
strain is the order parameter, and any thermodynamic
model (such as Landau theory) should be formulated
without any additional optical instability. On the other
hand, if there is an optical instability, the thermodynamic
models can be formulated in such a way that simply brings
in a linear coupling to strain. In the case of Landau the-
ory, the issue is whether, as in the ferroelastic case, the T
— T, prefactor should come in the strain term or in the
terms containing a general order parameter, with only a
constant prefactor in the pure strain terms. From Table
5 it is seen that there are no optic RUMs in sanidine at
k = 0. There are, however, three acoustic RUMs for wave
vectors in some directions in the Brillouin zone. This is
illustrated in Figure 7, which shows a contour map of the
magnitude of the sum = 1/(w? + Q?) calculated for sani-
dine by the CRUSH program for each wave vector in the
plot, which is actually shown as a polar plot for fixed
magnitude of the wave vector |k| and therefore gives
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Ficure 7. Contour map, represented as a polar plot, of the
function = 1/(w? + Q2) obtained from CRUSH calculations, eval-
uated by summing all modes for each wave vector represented
by the polar angles and with a fixed distance from k = 0. The
polar coordinates are defined such that 6 gives the angle between
k and b*, and ¢ is the angle between the projection of k on the
a*-c* plane and a*.

information about the soft directions of the acoustic
modes. In this case Q is a small constant chosen to avoid
divergence when w = 0, and the summation is over all
modes for each k. The most significant components of
this sum come from the acoustic modes with small values
of dw/d|k|, including the acoustic RUMs. From this plot
we note that the soft acoustic modes lie along [0,1,0] and
for all wave vectors in the a*-c* plane. Figure 8 shows
the three acoustic modes for the directions a*, b*, and c*
calculated from CRUSH. There is an acoustic RUM with
zero frequency for all wave vectors along each of these
directions, and all the other acoustic modes have zero
gradient at k = 0, so that acoustic mode frequencies vary
as w o« k2 in the limit k — 0. The existence of three soft
acoustic modes along each direction implies that the feld-
spar framework can be sheared in any direction or even
uniformly compressed in a concertina-like fashion. In re-
ality interunit forces ensure that the elastic constants are
nonzero, but because interunit forces are much smaller
than intraunit forces, the elastic constants in feldspars are
predicted to be small.

In the specific case of the monoclinic-triclinic phase
transition, the crystal must become unstable with respect
to a particular shear when the combination of elastic con-
stants C,,C,s — C2% falls to zero (Cowley 1976). Although
the rigid-unit model indicates that all three of the acoustic
modes for the feldspar framework are soft at the I' point,
the important modes are probably the acoustic RUMs.
The plane of acoustic RUMs requires that both C,, and
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Ficure 8. Soft acoustic modes along a*, b*, and ¢* for sanidine calculated using CRUSH.

Cq be soft, although the stability condition does not re-
quire that either actually vanishes at the phase transition.
That both elastic constants are naturally soft implies that
the stability condition can easily be met, precipitating the
observed ferroelastic phase transition. This basic picture
has been confirmed by lattice calculations (Dove and
Redfern 1997).

The I2/c-I1 ferroelastic phase transition in SrAl,Si,O,

The I2/c-IT transition occurs when the composition of
the strontium feldspar SrAl,Si,0; is varied toward the Ca
end-member, anorthite (McGuinn and Redfern 1994a,
1994b). The RUM spectrum calculated from the experi-
mentally determined and idealized structures of both
strontium and barium feldspars indicates that there are
no optic RUMs in the I2/c phase, but QRUMs replace
some of the RUMs found in the ideal or sanidine phases
(Table 5). Thus, the transition is caused by a soft acoustic
mode of the type that causes the ferroelastic C2/m-to-CT
phase transition in albite, and the CRUSH calculations
indicate that the acoustic modes have the same sort of
softening as in albite. In effect, the discussion of the fer-
roelastic phase transition in albite can be applied directly
to the present case. Experiments also indicate that with
a certain amount of Al-Si disorder the I2/c-IT phase
boundary is shifted toward the anorthite end (Tribaudino
et al. 1993), i.e., more of the smaller Ca?* ions must be
present to allow the framework to collapse at the same
temperature. This shows the effect of Al-Si disorder hard-
ening the soft acoustic modes and moving the transition
point to more extreme conditions. This has been con-
firmed by lattice calculations (Dove and Redfern 1997).

The I1-P1 phase transition in anorthite

The IT-PT phase transition in anorthite involves a dou-
bling of the unit-cell size and therefore involves an insta-
bility with a wave vector on the Brillouin zone boundary.
X-ray diffraction patterns indicate that there are two crit-
ical points on the Brillouin zone boundary, labeled Z and
Z' (Salje 1985, 1987). There has been some discussion
over whether the transition can be described as a simple

displacive phase transition with the (by now) usual dis-
tortions of the framework of (Si,Al)O, tetrahedra, or
whether the transition is in some way driven by ordering
of the Ca?+ cations in their cavity sites.

Calculations performed with CRUSH for structure ob-
tained from an X-ray structure refinement did not indi-
cate the presence of a RUM at either of the critical points;
indeed, as with the 72/c phase, no optic RUMs were cal-
culated at any wave vector. However, we were able to
generate a structure with RUMs at these points by mak-
ing very small modifications to the experimental struc-
ture. This was obtained by idealizing the tetrahedra and
then very slightly (i.e., by <0.1%) modifying the unit-cell
parameters. This latter step is equivalent to adding small
strains to the crystal structure, and it points to the im-
portant coupling between strain and the displacive phase
transition. We found that the existence of a RUM at the
Z point, (0,0,1), could be obtained for a range of strain
distortions rather than for a single structure.

The coupling between strain and the lattice instability
in the IT phase of anorthite is possibly important for two
reasons. First, it was found that the thermodynamic char-
acter of the phase transition, whether it is first order or
second order, is very sensitive to the cation order in the
structure (Redfern and Salje 1987; Redfern et al. 1988).
The cation order slightly influences the strains on the
crystal structure, as shown above. Second, the sponta-
neous strains that accompany the phase transition are
extremely sensitive to the cation order (Redfern and Salje
1987, Redfern et al. 1988). This somewhat surprising
finding is consistent with the high degree of the sensitivity
of the RUM spectrum to the imposed strains on the crys-
tal described above.

It should be noted that in the idealized structure a soft
mode occurs only at the relevant points Z and Z’. The
frequency increases farther away from these points in all
directions. This explains why Landau theory works so
well for this phase transition. Fluctuations of the order
parameter, which are neglected in Landau theory, are ef-
fectively confined to these wave vectors and are therefore
never able to become thermodynamically significant.
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Frequency (THz)

FIGURE 9. The distribution of frequencies in sanidine at k =
0, where each mode is represented by a single vertical line. Note
that there is a fairly uniform distribution of mode frequencies,
with no clear gap between the RUMs, QRUMs, and the modes
that are normally considered to be of higher frequency.

Quasi-RUMs in the feldspar structure

In feldspars there is a large set of QRUMs in addition
to the RUMs with zero frequency. These occur for wave
vectors all over the Brillouin zone. We illustrate the effect
first by considering the frequencies given by our split-
atom calculations using CRUSH. Figure 9 shows a line
for each calculated frequency at k = 0. It can be seen that
there are no significant gaps between bands of modes, and
instead the QRUM band merges continuously into the
high-frequency band that is normally thought to contain
the phonon modes that involve distortions of the tetra-
hedra. Figure 10 shows the frequency density of states
calculated using CRUSH, integrated over the Brillouin
zone. The picture of a broad spread of frequencies down
to the lowest values is indicated by the observation that
there is not the usual behavior g{w) o« «? in the limit w
— 0 (see, for example, Dove 1993). To illustrate the spread
of QRUMSs in the Brillouin zone, the contour maps in
Figure 11 show the magnitude of the sum Z 1/(«w? + Q?)
for each wave vector, where  is a small constant as de-
fined previously. At any wave vector a significant com-
ponent of this sum comes from the QRUMs with large
values of w=2, and variations across the Brillouin zone
reflect the variations in the QRUM spectra. The three
contour maps in Figure 11 show some a*-b* and b*-c*
sections. The patterns of the contour plots are surprising-
ly complex.

The QRUMs help to explain the complex subsolidus
behavior of feldspars. Because feldspar frameworks have
QRUMs at wave vectors throughout the Brillouin zone,
“local QRUMSs” can form. Local QRUMs are superpo-
sitions of several low-frequency modes, this idea being
similar to that of describing the motions of atoms in a
crystal as a superposition of all possible normal modes.
The local QRUMSs are important because they can have
a large amplitude in a small region of a crystal but a very
low amplitude elsewhere. This implies that the feldspar
framework can easily accommodate local defects because
the framework can adjust about such a defect by means
of the condensation of a local QRUM, the remainder of
the framework remaining unaltered. Thus, Al-Si disorder
and cation disorder do not strain the framework unduly,
thereby allowing the large compositional range of feld-
spars observed in nature.
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Ficure 10. Phonon density of states for sanidine (top) and
anorthite (bottom) evaluated using CRUSH.

SODALITE
The sodalite family of structures

Sodalites have the general formula M,T,,0,,X,, where
M is a cage cation such as Na+, Ca2+, or Sr2* (or a vacant
site), T is a tetrahedrally coordinated framework cation
such as Si** or AP+ (it is common for these to be either
all of one species or to have a 1:1 ratio of Si‘* to Al3+),
and X is a cage anion such as Cl-, OH-, SO3-, or
WO3- (or another vacant site). Sodalites have a tetrahe-
dral framework structure, the topology of which can be
described in terms of a space-filling, body-centered pack-
ing of truncated octahedra. These truncated octahedra are
commonly termed “sodalite cages.” They are one of the
fundamental building blocks of the more complex zeolite
structures.

Sodalites can undergo various structural phase transi-
tions (Depmeier 1992). The physical phenomena under-
lying these phase transitions may involve ordering of the
tetrahedral cations, ordering of the cage cations or anions
(the latter may also involve orientational ordering), or an
adaptation (collapse) of the framework to the sizes of the
cage ions in the way discussed above for kalsilite and
nepheline. Changes in the sodalite structure as a function
of composition are commonly explained by the adapta-
tion of the sodalite framework to the size and geometry
of the species incorporated into the cage. From this point
of view, a sodalite would be fully expanded to the highest
possible topological symmetry when large cage cations
and anions are incorporated, or, in the case of large mo-
lecular cage anions such as SO}~ or WO}-, where these
are dynamically disordered. Incorporating smaller guest
species into the host framework would then lead to a
collapse of the framework with a significant volume re-
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Ficure 11. Contour maps of the function = 1/(w? + Q2?) obtained from CRUSH calculations, evaluated by summing all modes
for each wave vector, for all wave vectors in the a*-b* and b*-c* planes of sanidine (left and center) and the b*-c* plane of anorthite

(right).

duction. For partially collapsed sodalites, the distortion
from the fully expanded polymorph may be described in
an ideal case by the tilt angle of the tetrahedra. This tilt
angle is temperature and composition dependent, de-
creasing with increasing temperature and, as has been
mentioned above, increasing for a given framework with
decreasing radii of the cage ions.

The symmetries occurring in sodalites were recently
reviewed by Depmeier (1992). The maximal symmetry
of a fully expanded sodalite having only one species of
tetrahedral cation, such as the aluminate sodalites, or
having complete Al-Si disorder, is Im3m. For the more
common aluminosilicate sodalites, a sodalite with the
same maximal topological symmetry would have a sym-
metry of Pm3n because of the ordering of the two frame-
work cations. An isotropic collapse of sodalites in these
two space groups would lead to I43m and P43#n, respec-
tively. The only known fully expanded sodalites are some
aluminate sodalites, such as SryAl,,0,,(WO,),, with space
group Im3m, and ordered aluminosilicate sodalites, such
as Ag:Si;Al;O,,, with space group Pm3n.

Aside from the intrinsic interest in sodalite structures,
sodalites are also interesting because the basic cage in the
structure is incorporated into many zeolite structures, such
as faujasite and zeolite A. Thus, the sodalite structure
naturally leads into the field of zeolites, and results for
sodalites may point toward important features of zeolites.

RUMs in the ideal Im3m structure

The RUM analysis for the ideal Im3m structure of
sodalite is given in Table 3. The most striking result is
that there is one RUM for each wave vector. This is a
remarkable demonstration of the way in which symmetry
can cause the constraints to become degenerate. In all our
previous examples there were only lines or planes of
RUMs in reciprocal space. Although these are significant,
they represent only an infinitesimal fraction of reciprocal
space, so that the total number of RUMs is on the order
of zero in comparison with the total number of normal

modes in a macroscopic crystal (i.e., for a line and a plane
of RUMs, the ratio of the number of RUMs to the total
number of modes is on the order of N-'/3 and N-23, re-
spectively, where N is the number of unit cells). Sodalite
is an example in which the number of RUMs is truly
significant. With one RUM per wave vector, the structure
is very floppy. Moreover, it is possible to generate local
distortions of the structure as linear combinations of the
RUMs over all wave vectors. Thus, a single cage can
distort with only a low cost in energy and with no signif-
icant long-range effects. The implications for zeolite
structures are clear: The RUM model provides a mech-
anism by which the structural cages can adapt their size
and shape, thereby allowing for the characteristic cata-
lytic properties of zeolites. This point is discussed in more
detail below.

The important RUM in the ideal Im3m structure is
the I'; mode. The condensation of this mode generates
the more common 743m phase, as found, for example,
in CazAl,,0,,(WO,),. This is illustrated in Figure 12, which
shows the structures of the Jm3m and I43m phases to
illustrate the relationship between them through a RUM
distortion. The RUMs at the N point have symmetry

Y

Im3m 143m

Ficure 12. Framework structures of the two cubic sodalite
phases with space groups Im3m and I43m, which is derived
from the Im3m phase by condensation of the I'; RUM.
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2N7 + Ni. The N5y RUMs can generate the I4,/acd
structure formed as the low-temperature phases of
Sr3Al,,0,,(M00,), and SrAl,0,,(WO,), (Depmeier and
Biithrer 1991).

RUM s in the 143m and P43n structures

The RUM calculations for the /43m and P43n phases
are given in Table 3. There are several RUMs in these
cases, although there is no longer one RUM per wave
vector as in the ideal Im3m phase. It is quite likely that
some of these act as soft modes for displacive phase tran-
sitions in representative examples, but the experimental
situation as reflected in the literature seems to be lacking
in crystallographic detail, and a detailed picture of phase
transitions based on RUM distortions awaits further ex-
perimental data.

RUMs and the positioning of cations in sodalite
structures

We return now to our discussion of the implications of
having one RUM for each wave vector in the high-sym-
metry sodalite structure. As in the case of nepheline, stat-
ic RUM displacements can cause O atoms to move in-
ward toward some site, and this is a self-regulating
mechanism for holding cations in place. In the case of
sodalite the I'; RUM involves cooperative rotations of
the tetrahedra about their local 4 axes, the effect of which
on the hexagonal rings is to bring three of the O atoms
inward toward the center and three outward. To be pre-
cise, they move toward a position a little above or below
the plane of the ring. This is the position where most
cation species are found in zeolites with the sodalite cage
structure (Mortier 1982).

In sodalite, the existence of one RUM per wave vector
is the basis of an important new phenomenon, namely
the existence of local RUMs formed as linear combina-
tions of RUMs in reciprocal space. These lead to local
adsorption sites, formed as local wave packets, which need
not be repeated periodically in each unit cell. The wider
the region of reciprocal space used in these wave packets,
the more localized the wave packet can be. By using the
band of RUMs over the whole of the Brillouin zone, we
can construct a local RUM distortion that is localized on
one six-membered ring and its six nearest-neighbor rings
(Hammonds et al., in preparation).

This phenomenon has application to other zeolites with
the cage structure of sodalite, such as LTA and faujasite.
These zeolites are known to bind cations locally at vari-
ous sites, including those described above for sodalite
(George et al. 1991). In zeolite LTA there are seven com-
plete bands of RUMs, from which a variety of localized
RUMs can be formed, which may explain some of the
binding sites in this material (Dove et al. 1996a).

LEUCITE
Phase transitions in the leucite structures

Above 960 K, leucite, KAISi,O,, has a cubic structure
with space group fa3d, but on cooling it undergoes two
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successive displacive phase transitions (Palmer et al. 1989,
1990, 1997; Palmer and Salje 1990). The first transition
is to a tetragonal structure with space group 74,/acd. The
second transition at 940 K is to another tetragonal struc-
ture with space group I4,/a. The transitions are rapid,
reversible, and continuous (second order), and they do
not appear to involve any Al-Si ordering (Dove et al.
1992). The cubic phase is necessarily disordered with re-
spect to the site ordering of the Al and Si atoms. By
replacing the K cation with Rb or Cs the transition tem-
peratures are lowered, but the same 74,/a phase exists in
these isomorphs at low temperatures (Palmer et al. 1997).
The transitions generate considerable strain, and indeed
the Ia3d-14,/acd transition has the symmetry change
consistent with a proper ferroelastic phase transition
(Cowley 1976; Stokes and Hatch 1988).

It is possible to replace the framework cations with
other atoms and to retain the basic leucite structure. For
example, KFeSi,O, undergoes a first-order transition be-
tween the Ja3d and I4,/a phases at 930 K (Palmer et al.
1997). The Mg-substituted leucite K,MgSi;O,, can exist
in two distinct states (Bell et al. 1984, 1993). The cubic
Ia3d phase has the Mg and Si cations disordered. How-
ever, it is easy to produce a form of Mg-substituted leu-
cite with complete order, and the structure in this case is
monoclinic with space group P2,/c. On heating this phase
transforms to an orthorhombic phase with space group
Pbca by a displacive mechanism (Redfern 1994). There
is considerable interest in the different structures that are
found in the leucite family because the correlation be-
tween structure and chemistry may provide some useful
insights into the structural chemistry of other silicates.

RUMs in the Ia3d structure

The RUM analysis of the Ja3d phase is given in Table
3. In comparison with some of the other examples in this
paper there are not many RUMs in this phase, and those
that do exist are all restricted to a single symmetry direc-
tion in reciprocal space, namely along (110). The exis-
tence of this line of RUMs was confirmed by the inelastic
neutron-scattering study of KAISi, Oy leucite reported by
Boysen (1990), as discussed by Dove et al. (1995).

RUMs in the I4,/acd and I4,/a structures

The RUM analysis for the I4,/acd leucite structure is
given in Table 4. There are no RUMs in the /4,/a leucite
structure, and the number of RUMs in the 14,/acd struc-
ture is slightly less than in the parent Ia3d structure.

The phase transitions in leucite

The symmetry analysis of the displacive phase transi-
tions in KAISi, O, depends on the exact sequence of tran-
sitions. The two transition sequences, Ia3d-14,/a directly
and la3d-I14,/acd-I4,/a as observed, each involve distor-
tions at zero wave vector. If the phase transition were to
be directly from Ia3d to I4,/a the transition would be
generated by a distortion of T,, symmetry. On the other
hand, for the transition to proceed through the interme-
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diate I4,/acd phase, the initial distortion of the cubic phase
has symmetry E,, and the subsequent distortion of the
I4,/acd phase to generate the I4,/a structure has sym-
metry A,, in the point group 4/mmm. The transition /a3d-
I4,/acd has the correct symmetry change to be a proper
ferroelastic phase transition with a soft acoustic mode
rather than a soft optic mode.

The optic RUMs with zero wave vector in the Ia3d
structure have symmetry A,, + A,, + T,,. None of the
RUMs has E, symmetry, which means that the transition
Ia3d-14,/acd does not involve a soft optic RUM. There
is, however, a soft transverse acoustic RUM at zero wave
vector. The three acoustic modes at k = 0 have symmetry
T,,, with the transverse components generating shear
strains of symmetry E,. Thus, the first stage of the tran-
sition, namely Ia3d-I4,/acd, is a proper ferroelastic
instability. The RUMs with zero wave vector in the
14,/acd phase have symmetries A,, + B,, + B,, (the RUMs
in the cubic phase transformed as A,, — B,,, A,, = B,
and T,, — A,, + E,, although the latter E, is not a RUM
in the I4,/acd phase). The A,, RUM then acts as the soft
mode to drive the transition I4,/acd-I4,/a. This picture
was corroborated to some extent by the inelastic neutron-
scattering measurements of Boysen (1990), which showed
the existence of the soft optic and acoustic RUMs. Now
that the RUM model has been used to give the overall
picture it would be worth extending the experimental data.

The effect of chemical doping

It is interesting to consider further the substitution of
the K+ cations in the leucite structure by Rb*+ and Cs*.
The effect, as noted above, is to lower the transition tem-
perature on substitution (Palmer et al. 1997). Moreover,
the maximum distortion, that at 0 K, decreases on sub-
stitution of larger cations. The experimental data are giv-
en in Table 6. On the basis of general considerations of
the RUM model (Dove et al. 1992) we predict that the
transition temperature T, varies as the square of the order
parameter Q. For the Ia3d-to-I4,/a phase transition in
leucite we expect that the volume change AV also varies
as (2, so that we expect T, o< AV. The data given in Table
6 show that this relationship is followed to a reasonable
level. However, we must not push the quantitative anal-
ysis too far, for the behavior of each of the different sub-
stituted leucite samples is not identical.

Another interesting observation is that the unit-cell pa-
rameter of the cubic phase of leucite also increases on
substitution of the larger cations. Table 6 gives the cubic
unit-cell parameters of the three leucite samples given
above, together with the unit-cell parameter for analcime,
NaAlSi,O,-H,O (Line et al. 1996), and dehydrated anal-
cime, NaAlSi,O, (Line et al., in preparation), with the
unit-cell parameters in each case either measured at 1000
K or extrapolated to 1000 K from data at lower temper-
atures. The data imply that the Si-O and AIl-O bond
lengths apparently depend on the substitution of the K+
cation. This is rather surprising because the substitution
cannot affect the sizes of the tetrahedra, and from our

TABLE 6. Lattice parameters for cubic leucite structures,
measured at or extrapolated to 1000 K, transition
temperatures and relative volume changes for
different leucite samples

a T. AV
Leucite sample A) (K)* (A?)
KAISi,04 13.55* 936 99
RbAISI, O, 13.62* 750 65
CsAlISi,O 13.73* 373 38
NaAISi,0-H,O (anaicime) 13.80**
NaAlISi,O, (dehydrated analcime) 13.56**

Note: The relative volume changes are those measured at 35 of the
transition temperature.

* Data from Paimer et al. (1996).

** Data from Line et al. (1996).

calculations with the IDEALISER program we found that
the unit-cell parameter of leucite is uniquely determined
by the tetrahedral bond lengths without any possibility
for rotations of the tetrahedra to change the unit-cell vol-
ume without a change in symmetry. Instead the RUM
model suggests an alternative explanation in which the
change in bond length is probably associated with appar-
ent shortening resulting from thermal librational motions
of the tetrahedra moving as rigid bodies (as discussed by
Downs et al. 1990, 1992). This occurs because the cubic
phase has the maximum possible volume for this struc-
ture topology, without any collapse of the framework
about the cage cations. The effect of any RUM distortion,
dynamic or static, is to reduce the volume of the struc-
ture. This is illustrated in Figure 1, where the reduction
in the unit-cell parameter is proportional to 82, the square
of the rotation angle of the rigid units. Similarly, any
RUM phonon mode causes a decrease in the volume of
the cubic phase by an amount proportional to (§?), where
the angle brackets denote an average value because of
thermal libration, particularly from the RUMs with low
frequency and hence large amplitude. Two consequences
follow from this picture. First, the apparently shorter bond
lengths are associated with larger amplitude motions. If
there is a cation or H,O molecule in the cavities, this
object hinders the librational motion, just as it hinders
the structural collapse associated with the phase transi-
tion. Thus, we expect the amplitudes for rigid tetrahedral
rotations to be largest for natural leucite (with K cations)
and smallest for Cs-exchanged leucite and analcime, lead-
ing to a smaller cell parameter in natural leucite (which
is about the same size as in dehydrated analcime) and
larger cell parameters in Cs-exchanged leucite and anal-
cime. This is confirmed by the data in Table 6. Second,
it might be anticipated that (6?) scales with temperature,
so that at higher temperatures the mean-square ampli-
tude is larger, leading to a greater reduction in the volume
and hence a negative thermal expansion. In fact, the ther-
mal expansion in the leucite samples and in analcime is
positive (Palmer et al. 1997; Line et al. 1996), but it is
negative in dehydrated analcime (Line et al., in prepa-
ration).
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RUMs in the Pbca structure

The RUM analysis for the Pbca leucite indicated no
optic RUMs but found that along the three principal axes
there is a single transverse acoustic RUM with frequency
that varies as w « k2. The softest acoustic mode is with
the wave vector along [101] and polarized along [110].
Thus, we predict that the phase transition in Mg-substi-
tuted leucite from Pbca to P2,/c is a proper ferroelastic
phase transition driven by a soft acoustic mode. This is
consistent with the symmetry tables of Stokes and Hatch
(1988).

CORDIERITE
RUMs in the cordierite structures

Cordierite, Mg,Al,Si;O,, initially crystallizes in a hex-
agonal structure, space group P6/mcc, which is disor-
dered with regard to the Al-Si site occupancies (Meagher
and Gibbs 1977). On annealing at high temperatures it
transforms into an ordered orthorhombic phase with space
group Cccm (Gibbs 1966; Putnis et al. 1987). Cordierite
has attracted considerable technological interest, partly
because of the negative linear thermal expansion coeffi-
cient in one direction and the subsequent near-zero value
of the volume thermal expansion coefficient (Smart and
Glasser 1977).

The RUM data for the hexagonal and orthorhombic
phases of cordierite are given in Tables 1 and 4, respec-
tively. These two structures contain a reasonable number
of RUMs.

Anomalous thermal expansion of cordierite

In our discussion of the volumes of the different cubic
leucite structures, we explained the volume differences as
the effects of thermal vibrations involving rigid-body ro-
tations of the tetrahedra. It was noted that these vibra-
tions lower the volume of the structure. They are also of
relatively large amplitude because the square of the am-
plitude scales as w=2 (Dove 1993), where the angular fre-
quency w of the RUM is quite low. In the case of the
leucite structures we interpreted the difference in volume
as resulting from the cage cations acting to inhibit the
amplitude. In other cases, such as cordierite, dehydrated
analcime, and @-quartz, the thermal vibrations decrease
volume on heating. The square of the amplitude scales
as kg T/w? (Dove 1993), so that there is a contribution to
the volume o« —k,7/w?. This negative contribution to the
thermal expansion is the opposite of that from the an-
harmonic expansion of the Si-O bonds. In the case of
cordierite this negative contribution partly results from
several RUMSs. Although we have not attempted to quan-
tify this point, we believe that the RUM model leads to
a general understanding of the phenomenon of negative
or anomalously low thermal expansion in some silicates.

DISCUSSION AND SUMMARY

Our purpose in the present paper has been to explore
the generality of the RUM mode! by calculating the RUM
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spectra for a range of framework aluminosilicates and
relating the results of these calculations to some of the
properties of these materials. The major focus has been
the displacive phase transitions that are so common in
framework aluminosilicates. Indeed, the existence of
RUMS naturally explains why phase transitions may oc-
cur in these materials. We noted that the RUMs can act
as the classical soft modes for these phase transitions, and
we identified both optic RUMs and acoustic RUMs that
can act as the soft mode in the various examples.

In view of one of the arguments presented in the second
section, it might seem surprising that there are any RUMs
at all. Instead, there are RUMs in all the systems we
studied, but for any given structure the number of RUMs
decreases as the symmetry is lowered as a result of dis-
placive phase transitions. Because several RUMs act as
candidate soft modes, several potential instabilities may
be possible for any framework aluminosilicate. The ques-
tion of why any given structure should choose to distort
by one RUM as opposed to any other is outside the scope
of the present paper, but we showed that the torsional
interaction that preserves the Si-O-Si bond angles can
separate the energies of different RUM distortions. Fur-
ther discussion of this point in general terms is given
elsewhere (Dove et al. 1995).

In some cases the high-temperature phases are expect-
ed to be disordered. Cristobalite and tridymite are ob-
vious examples of this because the ideal structures imply
the existence of implausible linear Si-O-Si bonds. The
nature of the high-temperature phases is an open ques-
tion, but we argued that the superposition of planes of
RUMs can produce dynamic disorder on the length scale
of the unit cell. We prefer this description rather than the
idea that a high-temperature phase is composed of do-
mains having the local structure of the low-temperature
phase, as was outlined in our discussion of cristobalite.

Some of our calculations have received experimental
confirmation. Inelastic neutron-scattering experiments
have measured several low-frequency modes in quartz
(Dolino et al. 1992) and leucite (Boysen 1990) that are
calculated to be RUMSs. In quartz one of the modes that
is a RUM only in the high-temperature phase is seen to
increase rapidly in frequency on cooling below the tran-
sition temperature. The RUMs in cristobalite (Hua et al.
1988; Welberry et al. 1989) and tridymite (Withers et al.
1994) have been measured by electron diffraction, pro-
viding a stringent test of the calculated RUM spectra in
the different phases of these materials. One striking fea-
ture of these observations is that the streaks of diffuse
scattering that correspond to the scattering plane cutting
through planes of RUMs in reciprocal space are narrow
(apparently no wider than the resolution of the experi-
ment). Inelastic neutron-scattering measurements on a
powdered sample of cristobalite (Swainson and Dove
1993a) have shown that there is a striking difference in
the number of low-frequency modes (i.e., RUMs) be-
tween the high-temperature and low-temperature phases,
in agreement with the calculated RUM spectra. Thus,
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there is already a strong body of experimental evidence
in support of the RUM model.

We noted some of the consequences of the existence of
RUMs aside from the main focus on the origins of dis-
placive phase transitions. One is that RUM distortions
are involved in cation-ordering processes. When Na and
K order in the kalsilite-nepheline solid-solution series,
the structure of the ideal parent phase must distort to
accommodate the different sizes of the Na*+ and K+ cat-
ions. We have seen how these structures distort to accom-
modate the different cation sizes by RUM distortions.

Another consequence of the existence of RUMs is that
a RUM vibration is expected to lower the volume of a
structure. In the case of the leucite-analcime family of
structures, the presence of a cation or H,O molecule in
the cages in the structure can inhibit the amplitude of the
RUM vibrations, which leads to a change in the volume
of the structure for different substitutions. Because the
RUM vibrational amplitude increases with temperature,
the RUMs provide a negative contribution to the thermal
expansion. This has been documented for cristobalite
(Swainson and Dove 1995b), and we speculate that the
model can provide the basis for understanding the ob-
servation of negative thermal expansion in 8-quartz, cor-
dierite, dehydrated analcime, and some zeolites.

We have not attempted in this paper to cover system-
atically all framework topologies, but hope that the pres-
ent study, together with the availability of our CRUSH
program (Hammonds et al. 1994), will encourage analysis
of other systems. We have also limited the amount of
information given for each system; for example, we have
not given detailed information on the eigenvectors of each
RUM, nor have we given the symmetries of the RUMs
unless they were relevant for the discussion of a phase
transition. However, this information can easily be gen-
erated by the interested reader using the CRUSH pro-
gram.

Finally, we pose the question of where the insights from
the RUM model will subsequently lead. The two major
areas in which the RUM model may have some impact
are studies of silicate glasses and zeolites. It is worth re-
calling that the basic idea of RUMs as floppy modes is
already common in the study of glasses. However, in the
case of glasses no systematic account has been made of
the way in which constraints can be degenerate, although
the existence of local RUMs has been observed by low-
frequency inelastic neutron scattering. We imagine that
RUMs exist in glasses because of the existence of large
rings of connected tetrahedra, which seem to allow for
greater degeneracies of constraints. The step from the
evaluation of RUMSs in crystalline networks to the anal-
ysis of RUMs in glassy networks is not trivial, but we
believe that there are enough pointers in our present work
to make it quite feasible. We expect that a more system-
atic analysis of the RUMSs in glassy networks will allow
some of the fundamental and technologically important
physical properties, such as thermal expansion, to be bet-
ter understood, particularly with regards to the depen-
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dence on chemical composition. The application of the
RUM model to zeolites will be somewhat easier, and as
we noted in the discussion on sodalites some preliminary
calculations have already been made. Given that in some
cases there is one or more RUMSs per wave vector, there
is the possibility of considerable local distortion of the
zeolite cages without significant cost to the energy of the
structure. It is quite likely that this would be related to
the catalytic properties of zeolites. Moreover, the large
number of RUMs would also explain the frequent obser-
vations of negative thermal expansion in zeolites. We en-
visage that a RUM analysis will thus form part of the
routine evaluation of any custom-designed zeolite struc-
ture.
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