Phase diagram and *P-V-T* equation of state of Al-bearing seifertite at lowermost mantle conditions

DENIS ANDRAULT^{1,*}, REIDAR G. TRØNNES², ZUZANA KONÔPKOVÁ³, WOLFGANG MORGENROTH⁴, HANNS P. LIERMANN³, GUILLAUME MORARD⁵ AND MOHAMED MEZOUAR⁶

¹Laboratoire Magmas et Volcans (LMV-OPGC-CNRS), Université B. Pascal, 5 rue Kessler, 63000 Clermont-Ferrand, France ²Natural History Museum and Centre for Earth Evolution and Dynamics, University of Oslo, Sem Sealands vei 24, Blindern, NO-0316 Oslo, Norway

³Photone Sciences, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany ⁴Institut für Geowissenschaften, Goethe University of Frankfurt, Altenhöferallee 1, 60438 Frankfurt am Main, Germany ⁵Institut de Minéralogie, de Physique des Minéraux et de Cosmochimie (IMPMC), 4 place Jussieu, 75005 Paris, France

⁶European Synchrotron Radiation Facility (ESRF), 71 Rue des Martyrs, 38000 Grenoble, France

ABSTRACT

We investigated the properties of Al-bearing SiO₂ (with 4 or 6 wt% Al₂O₃) at pressures and temperatures corresponding to the lowermost mantle, using laser-heated diamond-anvil cell coupled with synchrotron-based in situ X-ray diffraction. The phase transition from CaCl₂-structured to α -PbO₂structured (seifertite) polymorphs occurs between 113 and 119 GPa at 2500 K. The range of pressure where the two phases coexist is small. There is a slight decrease of the transition pressure with increasing Al-content. We propose a tentative phase diagram reporting the minerals composition as a function of pressure in the SiO₂-Al₂O₃ system.

We also refine the *P-V-T* equation of state of Al-bearing seifertite based on volume measurements up to more than 160 GPa and 4000 K [$V_0 = 92.73(10)$ Å³, $K_0 = 304.2(3.0)$ GPa, $K'_0 = 4.59$ (fixed), $\Theta_{D0} =$ 1130 K (fixed), $\gamma_0 = 1.61(3)$]. At 300 K, the volume decrease at the CaCl₂ to α -PbO₂ transition is 0.5(1)%, a value slightly lower than the 0.6% reported previously for Al-free samples. At high temperature, the Grüneisen parameter of seifertite is found to be similar to that of stishovite. Nevertheless, the $\Delta V/V$ across the CaCl₂-form to seifertite transition is found to increase slightly with increasing temperature.

Across the phase transition, volume changes can be translated into density changes only when the Al substitution mechanisms in both $CaCl_2$ -form and seifertite are defined. The analysis of all available data sets suggests different substitution mechanisms for the two SiO₂ polymorphs. Al-substitution could occur via O-vacancies in the CaCl₂-form and via extra interstitial Al in seifertite. This would result in a density increase of 2.2(3)% at 300 K for SiO₂ in basaltic lithologies. Alternatively, the same Al-substitution mechanism in both of the SiO₂-dominated phases would yield a density increase of 0.5(1)%.

Keywords: Seifertite, phase transition in SiO₂, *P*-*V*-*T* equation of state, lowermost Earth mantle