American Mineralogist, Volume 99, pages 1265-1269, 2014

CHEMISTRY AND MINERALOGY OF EARTH'S MANTLE

Formation of SiH₄ and H₂O by the dissolution of quartz in H₂ fluid under high pressure and temperature[‡]

Ayako Shinozaki^{1,*}, Hiroyuki Kagi¹, Naoki Noguchi^{1,†}, Hisako Hirai², Hiroaki Ohfuji², Taku Okada³, Satoshi Nakano⁴ and Takehiko Yagi²

¹Geochemical Research Center, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
²Geodynamics Research Center, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
³Institute for Solid State Physics, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
⁴National Institute for Materials Science, Namiki, Tsukuba, Ibaraki 305-0044, Japan

ABSTRACT

Species dissolved in H_2 fluid were investigated in a SiO₂– H_2 system. Raman and infrared (IR) spectra were measured at high pressure and room temperature after heating experiments were conducted at two pressure and temperature conditions: 2.0 GPa, 1700 K and 3.0 GPa, 1500 K. With the dissolution of quartz, a SiH vibration mode assignable to SiH₄ was detected from Raman spectra of the fluid phase. Furthermore, an OH vibration mode was observed at 3260 cm⁻¹ from the IR spectra at 3.0 GPa. With decreasing pressure, the OH vibration frequencies observed between 3.0 and 2.1 GPa correspond to that of ice VII, and those observed at 1.4 and 1.1 GPa correspond to that of ice VI. These results indicate that the chemical reaction between dissolved SiO₂ components and H₂ fluid caused the formation of H₂O and SiH₄, which was contrastive to that observed in SiO₂–H₂O fluid. Results imply that a part of H₂ is oxidized to form H₂O when SiO₂ components of mantle minerals dissolve in H₂ fluid, even in an iron-free system.

Keywords: H₂-H₂O fluid; dissolution; Raman; IR; laser-heated diamond-anvil cell