Spinels Renaissance: The past, present, and future of those ubiquitous minerals and materials The systematics of the spinel-type minerals: An overview[†]

CRISTIAN BIAGIONI^{1,*} AND MARCO PASERO¹

¹Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, I-56126 Pisa, Italy

ABSTRACT

Compounds with a spinel-type structure include mineral species with the general formula $AB_2\varphi_4$, where φ can be O²⁻, S²⁻, or Se²⁻. Space group symmetry is $Fd\overline{3}m$, even if lower symmetries are reported owing to the off-center displacement of metal ions. In oxide spinels ($\varphi = O^{2-}$), A and B cations can be divalent and trivalent ("2-3 spinels") or, more rarely, tetravalent and divalent ("4-2 spinels"). From a chemical point of view, oxide spinels belong to the chemical classes of oxides, germanates, and silicates. Up to now, 24 mineral species have been approved: ahrensite, brunogeierite, chromite, cochromite, coulsonite, cuprospinel, filipstadite, franklinite, galaxite, hercynite, jacobsite, magnesiochromite, magnesiocoulsonite, magnesioferrite, magnetite, manganochromite, qandilite, ringwoodite, spinel, trevorite, ülvospinel, vuorelainenite, and zincochromite. Sulfospinels ($\phi = S^{2-}$) and selenospinels ($\phi = \text{Se}^{2-}$) are isostructural with oxide spinels. Twenty-one different mineral species have been approved so far; of them, three are selenospinels (bornhardtite, trüstedtite, and tyrrellite), whereas 18 are sulfospinels: cadmoindite, carrollite, cuproiridsite, cuprokalininite, cuprorhodsite, daubréelite, ferrorhodsite, fletcherite, florensovite, greigite, indite, kalininite, linnaeite, malanite, polydymite, siegenite, violarite, and xingzhongite. The known mineral species with spinel-type structure are briefly reviewed, indicating for each of them the type locality, the origin of the name, and a few more miscellaneous data. This review aims at giving the state-of-the-art about the currently valid mineral species, considering the outstanding importance that these compounds cover in a wide range of scientific disciplines.

Keywords: Spinel, oxide spinel, sulfospinel, selenospinel