Aluminum ion occupancy in the structure of synthetic saponites: Effect on crystallinity Hongping He^{1,*}, Tian Li^{1,2}, QI TAO¹, Tianhu Chen³, Dan Zhang^{1,2}, Jianxi Zhu¹, Peng Yuan¹ AND RUNLIANG ZHU¹

¹Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China ²University of Chinese Academy of Sciences, Beijing 100049, China ³School of Natural Resources and Environment, Hefei University of Technology, Hefei 230009, China

ABSTRACT

Two series of saponites with fixed (Si+Al)/Mg and Si/Mg ratios, respectively, were synthesized by using hydrothermal methods. The obtained products were characterized by XRD, XRF, ²⁷Al, and ²⁹Si MAS NMR, SEM, and TEM. XRD patterns showed that well-ordered saponites were obtained in the initial Si/Al ratio range of 5.43–7.89. Beyond this Si/Al ratio range, poorly crystallized saponites were obtained with small crystallized particles, which can be seen from TEM images. When intercalating saponite with surfactant, the intercalated products displayed strong and well-ordered (00*l*) reflections, indicating that layered saponite has been successfully synthesized in the present study. ²⁷Al MAS NMR spectra demonstrated that well-crystallized synthetic saponites had a higher Al(IV)/Al(VI) ratio than the poorly crystallized samples, which is an important factor affecting the crystallinity of synthetic saponite. A one-to-one substitution (i.e., 1 Al³⁺ \rightarrow 1 Mg²⁺) actually occurred in the octahedral sheet and this substitution had a negative effect on the crystallinity of the synthetic saponites. After grafting the synthetic saponites with silane, the decreased intensity of the ²⁹Si NMR signal at –86 ppm and the increased intensity of Q³ Si(0Al) and Q³ Si(1Al) signals strongly suggested that the signal at ca. –86 ppm corresponded to Q² Si at the layer edges of saponite.

Keywords: Synthetic saponite, occupancy of aluminum ion, crystallinity, ²⁷Al and ²⁹Si MAS NMR, isomorphous substitution