LETTER

Merwinite in diamond from São Luiz, Brazil: A new mineral of the Ca-rich mantle environment

DMITRIY A. ZEDGENIZOV^{1,2,*}, ANTON SHATSKIY^{1,2}, ALEXEY L. RAGOZIN^{1,2}, HIROYUKI KAGI³ AND VLADISLAV S. SHATSKY^{1,4}

¹V.S. Sobolev Institute of Geology and Mineralogy, Russian Academy of Science, Siberian Branch, Koptyuga pr. 3, Novosibirsk 630090, Russia ²Novosibirsk State University, Novosibirsk 630090, Russia

³Geochemical Research Center, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan ⁴A.P. Vinogradov Institute of Geochemistry, Russian Academy of Science, Siberian Branch, 1a Favorsky Street, Irkutsk 664033, Russia

ABSTRACT

Diamonds from Juina province, Brazil, and some others localities reveal the existence of a deep, Ca-rich carbonate-silicate source different from ultramafic and eclogite compositions. In this study, we describe the first observation of merwinite ($Ca_{2.85}Mg_{0.96}Fe_{0.11}Si_{2.04}O_8$) in a diamond; it occurs as an inclusion in the central growth domain of a diamond from the São Luiz river alluvial deposits (Juina, Brazil). In addition, the diamond contains inclusions of walstromite-structured CaSiO₃ in the core and ($Mg_{0.86}Fe_{0.14}$)₂SiO₄ olivine in the rim. According to available experimental data, under mantle conditions, merwinite can only be formed in a specific Ca-rich and Mg- and Si-depleted environment that differs from any known mantle lithology (peridotitic or eclogitic). We suggest that such chemical conditions can occur during the interaction of subduction-derived calcium carbonatite melt with peridotitic mantle. The partial reduction of the melt could cause the simultaneous crystallization of Ca-rich silicates (CaSiO₃ and merwinite) and diamond at an early stage, and ($Mg_{0.86}Fe_{0.14}$)₂SiO₄ olivine and diamond at a later stage, after the Ca-Mg exchange between carbonatite melt and peridotite has ceased. This scenario is supported by the presence of calcite microinclusions within merwinite.

Keywords: Merwinite, diamond, Earth's mantle, calcic lithology, carbon