American Mineralogist, Volume 99, pages 276-282, 2014

ACTINIDES IN GEOLOGY, ENERGY, AND THE ENVIRONMENT

Crystal structure of lead uranyl carbonate mineral widenmannite: Precession electron-diffraction and synchrotron powder-diffraction study[†]

JAKUB PLÁŠIL^{1,*}, LUKÁŠ PALATINUS¹, JAN ROHLÍČEK¹, LENKA HOUDKOVÁ², MARIANA KLEMENTOVÁ^{1,3}, VIKTOR GOLIÁŠ⁴ AND PAVEL ŠKÁCHA^{4,5}

 ¹Institute of Physics ASCR, v.v.i., Na Slovance 2, 18221, Praha 8, Czech Republic
²Olbramovice, Městečko 16, 25752 Olbramovice, Czech Republic
³Institute of Inorganic Chemistry ASCR, v.v.i., Husinec, Rež 1001, 250 68 Rež, Czech Republic
⁴Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Praha 2, Czech Republic
⁵Mining Museum Příbram, nám. Hynka Kličky 293, Příbram VI, 261 01, Czech Republic

ABSTRACT

The crystal structure of the lead uranyl-carbonate mineral widenmannite has been solved from precession electron-diffraction data and refined using both electron-diffraction data and synchrotron powder-diffraction data. Widenmannite is orthorhombic, *Pmmn*, with a = 4.9744(9), b = 9.3816(16), c = 8.9539(15) Å, and V = 417.86(12) Å³. The structure was solved by charge-flipping and refined to an $R_1 = 0.1911$ on the basis of 301 unique, observed reflections from electron diffraction data, and to R_p of 0.0253 and $R_{\rm F}$ of 0.0164 from X-ray powder data. The idealized structure formula of widenmannite is $Pb_2(OH)_2[(UO_2)(CO_3)_2]$, Z = 2. However, both data sets suggest that the widenmmanite structure is not that simple. There are two symmetrically independent, partly occupied U sites. The substitution mechanism can be written as $U(1)O_2 + Pb(OH)_2 \leftrightarrow U(2)O_2$. When the U(2) site is occupied, the U(1) O_2 group is absent, the two OH groups are substituted by O^{2-} and one Pb²⁺-vacancy. The chemical formula of the real structure should be written as $Pb_{2-x}(OH)_{2-2x}[(UO_2)(CO_3)_2]$, where x is the probability of the substitution U(2) \rightarrow U(1). The probability of occurrence of U(2) refines to x = 0.074(15) from the powder-diffraction data and to x = 0.176(4) from the electron-diffraction data. There is one Pb site (nearly fully occupied), which is coordinated by 11 anions (up to the distance of 3.5 Å), including O and OH⁻. The shorter Pb-O bonds form a sheet structure, which is linked by the weaker bonds to the uranyl-carbonate chains to form a three-dimensional framework structure.

Keywords: Widenmannite, uranyl bicarbonate, crystal structure, precession electron diffraction, synchrotron powder diffraction