American Mineralogist, Volume 99, pages 539-542, 2014

LETTER Synthesis of K-dominant tourmaline

ELEANOR BERRYMAN^{1,2,*}, BERND WUNDER² AND DIETER RHEDE²

¹Fachgebiet Mineralogie-Petrologie, Technische Universität Berlin, 13355 Berlin, Germany ²GeoForschungsZentrum Potsdam, Telegrafenberg, 14473 Potsdam, Germany

ABSTRACT

K-dominant tourmaline was synthesized in the system MgO-Al2O3-B2O3-SiO2-KCl-H2O at 700 °C and 4.0 GPa. The crystals were zoned and characterized by less-potassic cores (1.46 wt% K₂O) and more-potassic rims (up to 3.44 wt% K₂O). The K-dominant tourmaline rims are represented by the average structural formula (K_{0.60(3)}□_{0.36(3)})(Mg_{2.60(7)}Al_{0.40(7)})(Al_{5.98(3)}Si_{0.02(3)})Si₆O₁₈(BO₃)₃(OH)_{3.92(7)}O_{0.08(8)}, which is analogous to the structural formula of dravite and is referred to here as "K-dravite": the maximum analyzed K content (3.44 wt% K₂O) represents occupancy of the X site by 0.71 K pfu. The addition of Na to the system in approximately equal molar proportions to K results in the crystallization of K-bearing, Na-rich dravitic tourmaline, dramatically reducing the K content to an average value of 0.47 wt% K₂O, corresponding to 0.10 K pfu. This suggests that a K-dominated bulk composition is necessary for K-dominant tournaline crystallization. Compositional zoning shows that solid solution exists between end-member compositions of "K-dravite" [KMg₃Al₆Si₆O₁₈(BO₃)₃(OH)₃(OH)] and dravite via the isovalent exchange ${}^{x}K({}^{x}Na)_{-1}$, magnesio-foitite via the coupled substitution ${}^{X}K^{Y}Mg({}^{X}\Box^{Y}Al)_{-1}$, and "K-olenite" via the coupled substitution $^{\rm Y}$ MgOH($^{\rm Y}$ AlO)₋₁. Structural refinement of the powder X-ray diffraction data provides a unit-cell volume for the synthesized "K-dravite" of 1580.1(5) Å³, which is greater than that determined for K-bearing dravitic tourmaline synthesized at the same conditions [1574.9(4) Å³]. We interpret this to reflect expansion of the crystal structure due to incorporation of the relatively large K⁺ ion.

Keywords: Tourmaline, potassium end-member, high pressure, synthesis, Na-K solid solution