Crystal chemistry of layered Pb oxychloride minerals with PbO-related structures: Part II. Crystal structure of vladkrivovichevite, [Pb₃₂O₁₈][Pb₄Mn₂O]Cl₁₄(BO₃)₈·2H₂O

OLEG I. SIIDRA,^{1,*} SERGEY V. KRIVOVICHEV,¹ RICK W. TURNER,² MIKE S. RUMSEY,³ AND JOHN SPRATT³

¹Department of Crystallography, St. Petersburg State University, 7-9 University Emb., St. Petersburg 199034, Russia
²The Drey, Allington Track, Allington, Salisbury SP4 0DD, Wiltshire, U.K.
³Mineralogy Department, Natural History Museum, Cromwell Road, London SW7 5BD, U.K.

ABSTRACT

The crystal structure of vladkrivovichevite, a new complex lead oxychloride mineral from the Kombat Mine, Grootfontein, Namibia, has been solved by direct methods and refined to $R_1 = 0.048$ for 3801 unique observed reflections. The mineral is orthorhombic, *Pmmn*, a = 12.759(1), b = 27.169(4), c = 11.515(1) Å, and V = 3992.0(9) Å³. The structure of vladkrivovichevite belongs to a novel type of layered Pb oxychloride structure. The structure contains 12 symmetrically independent Pb sites. All Pb sites have strongly asymmetric coordination. Two B atoms form slightly distorted BO₃ triangles. One symmetrically independent Mn atom forms five Mn-O bonds and one Mn-Cl bond by forming MnO₃Cl octahedra. The O1, O2, O10, O11, and O12 atoms are tetrahedrally coordinated by four Pb atoms each, forming OPb₄ oxocentered tetrahedra. The O7 site has a remarkable octahedral coordination, consisting of four Pb and two Mn atoms. The O1Pb₄, O2Pb₄, O10Pb₄, and O11Pb₄ tetrahedra share common edges to produce bands interconnected by O12Pb₄ tetrahedra, forming a $[O_{18}Pb_{32}]^{28+}$ layer. A O7Pb₄Mn₂ heterometallic oxocentered octahedron serves as the core of the $[OPb_4Mn_2Cl_2(BO_3)_8]^{16-}$ clusters that link to the $[O_{18}Pb_{32}]^{28+}$ layer via BO₃ triangles. The presence of $[OPb_4Mn_2Cl_2(BO_3)_8]^{16-}$ clusters is associated with large cross-like vacancies in the $[O_{18}Pb_{32}]^{28+}$ layer.

Keywords: Vladkrivovichevite, lead oxyhalides, crystal structure, litharge derivatives, layered structures, oxocentered units, borates, complex topologies