Determination of Fe$^{3+}$/Fe using the electron microprobe: A calibration for amphiboles

WILLIAM M. LAMB,1,* RENALD GUILLEMETTE,1 ROBERT K. POPP,1 STEVEN J. FRITZ,2† AND GREGORY J. CHMIEL2‡

1Department of Geology and Geophysics, Texas A&M University, College Station, Texas 77843-3115, U.S.A.
2Earth and Atmospheric Sciences Department, Purdue University, West Lafayette, Indiana 47907-2051, U.S.A.

ABSTRACT
Iron is a common constituent in minerals from the Earth’s crust and upper mantle and often occurs in minerals as mixtures of two valence states, Fe$^{3+}$ or Fe$^{2+}$. Quantification of the values of Fe$^{3+}$/Fe$_{\text{total}}$, where Fe$_{\text{total}}$ = Fe$^{3+}$ + Fe$^{2+}$, in minerals may be necessary to accurately apply certain mineral equilibria to determine equilibrium values of important variables such as temperature (T), pressure (P), and oxygen fugacity (f$_{O_2}$). Most useful would be an analytical technique that permits determination of values of Fe$^{3+}$/Fe$_{\text{total}}$ within a single mineral grain that is contained within a standard petrographic thin section, and the excellent spatial resolution and relative accessibility of the electron microprobe (EMP) have resulted in various attempts to use this instrument to determine values of Fe$^{3+}$/Fe$_{\text{total}}$. These efforts have typically involved quantifying characteristics of the FeLa and/or FeLb peaks. In this paper, we employ the method of Fialin et al. (2001), who have shown that the location of the FeLa peak changes as a function of Fe content and values of Fe$^{3+}$/Fe$_{\text{total}}$ to determine values of Fe$^{3+}$/Fe$_{\text{total}}$ in amphiboles.

We have characterized the FeLa peak in several amphiboles with known values of Fe$^{3+}$/Fe$_{\text{total}}$ using the electron microprobe at Texas A&M University. Initial analyses employed a beam current of 20 nA in an effort to avoid Fe-oxidation due to electron beam generated H-loss (Wagner et al. 2008). Subsequent analyses were conducted at 100 nA, and the results are consistent with the 20 nA data only when relatively short duration analytical times were used.

The position of the FeLa peak was determined for three suites of amphiboles that have been experimentally treated such that grains in one of these mineral suites are chemically identical except for differences in the values of Fe$^{3+}$/Fe$_{\text{total}}$. A linear relation between the FeLa peak location and value of Fe$^{3+}$/Fe$_{\text{total}}$ was observed for each of these three amphibole suites. These three lines differ from one another in both their slope and intercept and these differences vary as a function of Fe content. Thus, these amphiboles served as the basis for the derivation of a relation between Fe content and FeLa peak location, both measured with the EMP, and the value of Fe$^{3+}$/Fe$_{\text{total}}$ as originally determined with 57Fe Mössbauer spectroscopy. The relation between the relative peak position (RPP = hematite standard FeLa peak position – amphibole FeLa peak position), Fe content, and Fe$^{3+}$/Fe$_{\text{total}}$ is

$$\frac{\text{Fe}^{3+}}{\text{Fe}_{\text{total}}} = \text{RPP} - \frac{\text{RPP}(0)\times \text{RPP}(1) - \text{RPP}(0)}{\text{RPP}(0)}$$

where

- RPP(0) = -1.37 × FeO + 19.59 × FeO - 3.85,
- RPP(1) = -1.25 × FeO + 21.39 × FeO + 13.05,

and FeO refers to the wt%FeO. This relation reproduces the measured values of Fe$^{3+}$/Fe$_{\text{total}}$ to within ±0.07 and, therefore, should permit determination values of Fe$^{3+}$/Fe$_{\text{total}}$ in amphiboles with Fe contents from 7 to 13 wt%FeO with similar precision. The amphiboles that were used in this study were kaersutites, Ti-bearing paragasites, and paragastic hornblendes. The calibration presented here should, at the very least, be applicable to amphiboles with similar compositions, and although further verification is necessary, this calibration may be useful for determining values of Fe$^{3+}$/Fe$_{\text{total}}$ in amphiboles with distinctly different compositions and may even be more universally applicable.

Keywords: Amphibole, ferric-ferrous, electron microprobe, Fe oxidation state

INTRODUCTION
Iron is relatively common in rocks from the crust and upper mantle, and this element often occurs in more than one

* E-mail: w-lamb@geos.tamu.edu
† Deceased
‡ Present address: Purdue Rare Isotope Measurement (PRIME) Laboratory, Department of Physics, Purdue University, West Lafayette, Indiana 47907-2036, U.S.A.

valence state. In general, application of mineral equilibria to quantify important parameters such as P, T, f$_{O_2}$, and f$_{H_2}$ in the environment of mineral equilibration requires chemical characterization of the relevant phases and, in some cases, this characterization must include determination of Fe$^{3+}$/Fe$_{\text{total}}$, where Fe$_{\text{total}}$ = Fe$^{3+}$ + Fe$^{2+}$. For example, in a study of eclogites from Dabie Shan, E. China, Schmid et al. (2003) estimated peak temperatures that were ~80 to 100 °C higher than previous estimates that were based on the same geothermometers but