Crystal structure and thermal expansion of aragonite-group carbonates by single-crystal X-ray diffraction

YU YE,^{1,*} JOSEPH R. SMYTH,² AND PAUL BONI²

¹Department of Physics, University of Colorado, Boulder, Colorado 80309, U.S.A. ²Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309, U.S.A.

ABSTRACT

Crystal structures of four aragonite-group carbonates—aragonite (Ca_{0.997}Sr_{0.003}CO₃), calcian strontianite (Ca_{0.147}Sr_{0.853}CO₃), cerussite (Ca_{0.001}Pb_{0.999}CO₃), and witherite (Sr_{0.019}Ba_{0.981}CO₃)—have been refined at ambient conditions, and thermal expansion has been measured over a range of temperatures from 143 to 586 K by single-crystal X-ray diffraction. Average linear thermal expansion coefficients $\alpha_0(V)$ are 58(2), 58.3(7), 64(2), and 57(2) (× 10⁻⁶ K⁻¹) for aragonite, strontianite, cerussite, and witherite, respectively, throughout the experimental temperature range. Aragonite, strontianite, and witherite have very similar $\alpha_0(V)$ values, whereas that of cerussite is significant larger, primarily due to the *c*axis thermal expansion for cerussite being much larger than those of the other carbonates. There are no significant differences for $\alpha_0(a)$ values among the four carbonates, whereas $\alpha_0(b)$ values decrease in the order of aragonite > strontianite > cerussite ~ witherite, and $\alpha_0(c)$ values increase in the order of aragonite < strontianite < witherite < cerussite. Crystal structures were refined for aragonite (184 to 527 K). <Ca-O> vs. *T* (K) is fitted linearly quite well, with a slope of 5.8(8) × 10⁻⁶ (Å/K). Corrected for assumed rigid body motion, the CO₃ groups showed no significant change in C-O distances over the temperature range.

Keywords: Aragonite, strontianite, cerussite, witherite, thermal expansion, crystal structure