Experimental incorporation of Th into xenotime at middle to lower crustal *P-T* utilizing alkali-bearing fluids

DANIEL E. HARLOV* AND RICHARD WIRTH

Section 3.3, GeoForschungsZentrum, Telegrafenberg, D-14473 Potsdam, Germany

ABSTRACT

In this study, a natural Th-absent xenotime $[(Y+HREE)PO_4]$, is enriched in specific areas with respect to Th + Si utilizing a series of alkali-bearing fluids that included 2 N NaOH, 2 N KOH, Na₂Si₂O₅ + H₂O, and NaF + H₂O, in addition to ThO₂ and SiO₂. Charge and fluid were sealed in Au capsules and placed in the piston-cylinder apparatus (CaF₂ assemblies) at 1000 MPa and 900 °C (8 to 25 days) or in cold-seal autoclaves on a hydrothermal line at 500 MPa and 600 °C (23 days). BSE imaging, EMP analysis, and TEM indicate that a fraction of the xenotime grains in the 2 N KOH, Na₂Si₂O₅ + H₂O, and NaF + H₂O experiments have altered areas enriched in Th + Si. No reaction was observed in the 2 N NaOH experiments. The altered areas occur as a series of curvilinear intergrowths with sharp compositional boundaries that extend from the edge of the xenotime grain into the interior. Formation of these Th + Si enriched areas is interpreted as a consequence of fluid-mediated coupled dissolution-reprecipitation.

Keywords: Xenotime, thorite, coupled dissolution-reprecipitation, alkali-bearing fluids