Titanium in muscovite, biotite, and hornblende: Modeling, thermometry, and rutile activities of metapelites and amphibolites

JENNIFER A. CHAMBERS* AND MATTHEW J. KOHN

Department of Geosciences, Boise State University, 1910 University Drive, MS 1535, Boise, Idaho 83725, U.S.A.

ABSTRACT

Reactions involving the VITiIVAlIVAlIVSi exchange in muscovite, biotite, and hornblende were calibrated thermodynamically using a set of experimental and natural data in rutile- plus quartz- coesite-bearing assemblages. The specific respective reactions are

\[K(Al_3)(AlSi_3)O_{10}(OH)_2 + TiO_2 = K(AlTi)(AlSi_3)O_{10}(OH)_2 + SiO_2 \] (R1)

\[K(\square MgAl)Si_3O_{10}(OH)_2 + TiO_2 = K(\square MgTi)AlSi_3O_{10}(OH)_2 + SiO_2 \] (R2)

\[Ca_2Mg_3Al_4Si_2O_{22}(OH)_2 + 2TiO_2 = Ca_2Mg_3Ti_2Al_4Si_2O_{22}(OH)_2 + 2SiO_2, \] (R3)

Ideal mixing on octahedral or octahedral plus tetrahedral sites and a non-ideal van Laar solution model yield the best regression results for thermodynamic fit parameters, with R^2 values of 0.98–1.00. Isopleths of the equilibrium constant (K_{eq}) show minimal pressure dependencies of <1 °C/kbar, implying that the equilibria are poor barometers. Model reproducibility of the ideal portion of the equilibrium constant (K_{id}) is excellent (ca. ±0.1 to 0.3, 2σ), but the absolute value of the combined term $\Delta S + K_{id}$ is quite small (absolute values from 0 to 4), so calibration residuals propagate to temperature errors $>\pm50–100$ °C. Whereas the consistency of a mica or hornblende composition with a known T can be evaluated precisely, Ti chemistry in these reactions is sensitive to composition and does not resolve T or P. Although the activity of TiO$_2$ in rutile [$a(rt)$] was also evaluated using both the garnet-rutile-ilmenite-plagioclase-quartz (GRIPS) equilibrium and our new calibrations in rutile-absent, ilmenite-bearing rocks whose peak P-T conditions are otherwise known. Metapelites have average $a(rt)$ of 0.9 (GRIPS) and 0.8 (R1), whereas amphibolites have $a(rt)$ of 0.95 (GRIPS and R3). A value for $a(rt)$ of 0.80 ± 0.20 (metapelites) and 0.95 ±0.05–0.25 (amphibolites) is recommended for trace-element thermobarometers in ilmenite-bearing, rutile-absent rocks. The dependence of Ti contents of minerals on $a(rt)$ and the reequilibration of Ti during metamorphic reactions both deserve further exploration, and may affect application of trace-element thermobarometers.

Keywords: Titanium, rutile, muscovite, biotite, hornblende

INTRODUCTION

Trace-element thermobarometry holds promise of superior accuracy and precision in metamorphic rocks. For example, combined calibration and analytical errors for Ti-in-zircon, Ti-in-ilmenite, and Zr-in-rutile thermometers are as low as ±5–10 °C (Watson et al. 2006; Wark and Watson 2006; Tomkins et al. 2007) and ±20 °C for Zr-in-titanite (Hayden et al. 2008), similar to the measured reproducibility of these thermometers in natural rocks (e.g., Zack et al. 2004; Spear et al. 2006). Recently, the Ti content of muscovite/phengite was proposed as a barometer based on the exchange VITiIVAlIVAlIVSi in mica in equilibrium with rutile + quartz/coesite, and was calibrated using an experimental database (Auzanneau et al. 2010). Here we further explore the P- and T-dependencies of this exchange in muscovite/phengite, biotite, and hornblende, augmenting experimental data with a rich database of natural samples.Considering a broad interest in determining the activity of TiO$_2$ in rutile [$a(rt)$] in metamorphic rocks, we further explore implications of these equilibria for estimating this quantity in typical metapelites and amphibolites, with a large database of ilmenite-bearing, rutile-absent rocks.

Note that we use the term “$a(rt)$” to refer to the activity of pure TiO$_2$ in rutile rather than “$a(TiO_2)$,” because TiO$_2$ can form numerous structural states—rutile, anatase, brookite, etc.—each with its own reference thermodynamic properties. This notation follows the convention of referring to activities of end-member mineral species with abbreviations in lowercase, e.g., $a(an)$ = activity of pure anorthite in feldspar, $a(fo)$ = activity of pure forsterite in olivine, etc. We do, however, capitalize element abbreviations, e.g., $a(Tibt)$ = activity of the pure titanium biotite end-member.