Limitations of Fe^{2+} and Mn^{2+} site occupancy in tourmaline: Evidence from Fe^{2+} - and Mn^{2+} -rich tourmaline[†]

ANDREAS ERTL,^{1,*} UWE KOLITSCH,^{2,1} M. DARBY DYAR,³ JOHN M. HUGHES,⁴ GEORGE R. ROSSMAN,⁵ ADAM PIECZKA,⁶ DARRELL J. HENRY,⁷ FEDERICO PEZZOTTA,⁸ STEFAN PROWATKE,⁹ CHRISTIAN L. LENGAUER,¹ WILFRIED KÖRNER,¹⁰ FRANZ BRANDSTÄTTER,² CARL A. FRANCIS,¹¹ MARKUS PREM,¹ AND EKKEHART TILLMANNS¹

¹Institut für Mineralogie und Kristallographie, Geozentrum, Universität Wien, Althanstrasse 14, 1090 Vienna, Austria ²Mineralogisch-Petrographische Abt., Naturhistorisches Museum, Burgring 7, 1010 Vienna, Austria

³Department of Geography and Geology, Mount Holyoke College, South Hadley, Massachusetts 01075, U.S.A.

⁴Department of Geology, University of Vermont, Delehanty Hall, Burlington, Vermont 05405, U.S.A.

⁵Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena 91125-2500, U.S.A.

⁶Department of Mineralogy, Petrography, and Geochemistry, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland

⁷Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana 70803, U.S.A.

⁸Museo di Storia Naturale, Corso Venezia 55, I-20121 Milan, Italy

⁹Institut für Geowissenschaften, Universität Heidelberg, Im Neuenheimer Feld 236, 69120 Heidelberg, Germany ¹⁰Department für Umweltgeowissenschaften, Geozentrum, Universität Wien, Althanstrasse 14, 1090 Vienna, Austria ¹¹Harvard Mineralogical Museum, 24 Oxford Street, Cambridge, Massachusetts 02138, U.S.A.

ABSTRACT

Fe²⁺- and Mn²⁺-rich tourmalines were used to test whether Fe²⁺ and Mn²⁺ substitute on the *Z* site of tourmaline to a detectable degree. Fe-rich tourmaline from a pegmatite from Lower Austria was characterized by crystal-structure refinement, chemical analyses, and Mössbauer and optical spectroscopy. The sample has large amounts of Fe²⁺ (~2.3 apfu), and substantial amounts of Fe³⁺ (~1.0 apfu). On basis of the collected data, the structural refinement and the spectroscopic data, an initial formula was determined by assigning the entire amount of Fe³⁺ (no delocalized electrons) and Ti⁴⁺ to the *Z* site and the amount of Fe²⁺ and Fe³⁺ from delocalized electrons between *Y*-*Z* and *Y*-*Y*): ^{*X*}(Na_{0.9}Ca_{0.1}) ^{*Y*}(Fe²⁺₂)Al_{0.4}Mn²⁺_{0.5}Fe³⁺_{0.2}) ^{*Z*}(Al_{4.8}Fe³⁺_{0.5}Fe³⁺_{0.2}Ti⁴⁺_{0.1}) ^{*T*}(Si_{5.9}Al_{0.1})O₁₈ (BO₃)³ ^{*V*}(OH)³ ^{*W*}[O_{0.5}F_{0.3}(OH)_{0.2}] with *a* = 16.039(1) and *c* = 7.254(1) Å. This formula is consistent with lack of Fe²⁺ at the *Z* site, apart from that occupancy connected with delocalization of a hopping electron.

The formula was further modified by considering two ED doublets to yield: ${}^{X}(Na_{0.9}Ca_{0.1}) {}^{Y}(Fe_{1.8}^{2+}Al_{0.5}Mn_{0.5}^{2+}Fe_{0.3}^{3+}) {}^{Z}(Al_{4.8}Fe_{0.7}^{3+}Fe_{0.4}^{2+}Ti_{0.1}^{4+}) {}^{T}(Si_{5.9}Al_{0.1})O_{18} (BO_3)_{3} {}^{V}(OH)_{3} {}^{W}[O_{0.5}F_{0.3}(OH)_{0.2}]$. This formula requires some Fe²⁺ (~0.3 apfu) at the Z site, apart from that connected with delocalization of a hopping electron. Optical spectra were recorded from this sample as well as from two other Fe²⁺-rich tourmalines to determine if there is any evidence for Fe²⁺ at Y and Z sites. If Fe²⁺ were to occupy two different 6-coordinated sites in significant amounts and if these polyhedra have different geometries or metal-oxygen distances, bands from each site should be observed. However, even in high-quality spectra we see no evidence for such a doubling of the bands. We conclude that there is no ultimate proof for Fe²⁺ at the Z site, apart from that occupancy connected with delocalization of hopping electrons involving Fe cations at the Y and Z sites.

A very Mn-rich tourmaline from a pegmatite on Elba Island, Italy, was characterized by crystal-structure determination, chemical analyses, and optical spectroscopy. The optimized structural formula is ${}^{X}(Na_{0.6}\square_{0.4})$ ${}^{Y}(Mn_{1.3}^{2+}Al_{1.2}Li_{0.5}) {}^{Z}Al_{6} {}^{T}Si_{6}O_{18}$ (BO₃)₃ ${}^{V}(OH)_{3} {}^{W}[F_{0.5}O_{0.5}]$, with a = 15.951(2) and c = 7.138(1) Å. Within a 3 σ error there is no evidence for Mn occupancy at the Z site by refinement of Al \leftrightarrow Mn, and, thus, no final proof for Mn²⁺ at the Z site, either.

Oxidation of these tourmalines at 700–750 °C and 1 bar for 10–72 h converted Fe²⁺ to Fe³⁺ and Mn²⁺ to Mn³⁺ with concomitant exchange with Al of the *Z* site. The refined ²Fe content in the Fe-rich tourmaline increased by ~40% relative to its initial occupancy. The refined ⁹Fe content was smaller and the <Y-O> distance was significantly reduced relative to the unoxidized sample. A similar effect was observed for the oxidized Mn²⁺-rich tourmaline. Simultaneously, H and F were expelled from both samples as indicated by structural refinements, and H expulsion was indicated by infrared spectroscopy. The final species after oxidizing the Fe²⁺-rich tourmaline is buergerite. Its color had changed from blackish to brown-red. After oxidizing the Mn²⁺-rich tourmaline, the previously dark yellow sample was very dark brown-red, as expected for the oxidation of Mn²⁺ to Mn³⁺. The unit-cell parameter *a* decreased during oxidation whereas the *c* parameter showed a slight increase.

Keywords: Mn²⁺-rich tourmaline, Fe²⁺-rich tourmaline, Mössbauer, crystal structure, lower Austria, Elba Island, Italy, site occupancy

^{*} E-mail: andreas.ertl@a1.net

^{† 8} Open Access, thanks to the author's funding. Article available to all readers via GSW (http://ammin.geoscienceworld.org) and the MSA web site.