Brearleyite, Ca₁₂Al₁₄O₃₂Cl₂, a new alteration mineral from the NWA 1934 meteorite

CHI MA,^{1,*} HAROLD C. CONNOLLY JR.,^{2,3,4} JOHN R. BECKETT,¹ OLIVER TSCHAUNER,^{1,5} GEORGE R. ROSSMAN,¹ ANTHONY R. KAMPF,⁶ THOMAS J. ZEGA,⁷ STUART A. SWEENEY SMITH,^{3,8} AND DEVIN L. SCHRADER⁴

 ¹Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A.
²Department of Physical Sciences, Kingsborough Community College of CUNY, Brooklyn, New York 11235, and Earth and Environmental Sciences, The Graduate Center of CUNY, New York, New York 10024, U.S.A.
³Department of Earth and Planetary Sciences, American Museum of Natural History, New York, New York 10024, U.S.A.
⁴Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721, U.S.A.
⁵High Pressure Science and Engineering Center and Department of Geoscience, University of Nevada, Las Vegas, Nevada 89154, U.S.A.
⁶Mineral Sciences Department, Natural History Museum of Los Angeles County, Los Angeles, California 90007, U.S.A.
⁷Materials Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375, U.S.A.

ABSTRACT

Brearleyite (IMA 2010-062, Ca₁₂Al₁₄O₃₂Cl₂) is a Cl-bearing mayenite, occurring as fine-grained aggregates coexisting with hercynite, gehlenite, and perovskite in a rare krotite (CaAl₂O₄) dominant refractory inclusion from the Northwest Africa 1934 CV3 carbonaceous chondrite. The phase was characterized by SEM, TEM-SAED, micro-Raman, and EPMA. The mean chemical composition of the brearleyite is (wt%) Al₂O₃ 48.48, CaO 45.73, Cl 5.12, FeO 0.80, Na₂O 0.12, TiO₂ 0.03, -O 1.16, sum 99.12. The corresponding empirical formula calculated on the basis of 34 O+Cl atoms is $(Ca_{11,91})$ $Na_{0.06}$)_{511.97}(Al_{13.89}Fe_{0.16}Ti_{0.01})_{514.06}O_{31.89}Cl_{2.11}. The Raman spectrum of brealryeite indicates very close structural similarity to synthetic Ca₁₂Al₁₄O₃₂Cl₂. Rietveld refinement of an integrated TEM-SAED ring pattern from a FIB section quantifies this structural relationship and indicates that brearleyite is cubic, $I\overline{43}d$; a = 11.98(8) Å, V = 1719.1(2) Å³, and Z = 2. It has a framework structure in which AlO₄ tetrahedra share corners to form eight-membered rings. Within this framework, the Cl atom is located at a special position (3/8,0,1/4) with 0.4(2) occupancy and Ca appears to be disordered on two partially occupied sites similar to synthetic Cl-mayenite. Brearleyite has a light olive color under diffuse reflected light and a calculated density of 2.797 g/cm³. Brearlevite is not only a new meteoritic Ca-,Al-phase, but also a new meteoritic Cl-rich phase. It likely formed by the reaction of krotite with Cl-bearing hot gases or fluids.

Keywords: Brearleyite, Ca₁₂Al₁₄O₃₂Cl₂, new mineral, Cl-bearing mayenite, NWA 1934 meteorite, CV3 carbonaceous chondrite, SAED ring pattern, Rietveld refinement